![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ordi | Structured version Visualization version GIF version |
Description: Distributive law for disjunction. Theorem *4.41 of [WhiteheadRussell] p. 119. (Contributed by NM, 5-Jan-1993.) (Proof shortened by Andrew Salmon, 7-May-2011.) (Proof shortened by Wolf Lammen, 28-Nov-2013.) |
Ref | Expression |
---|---|
ordi | ⊢ ((𝜑 ∨ (𝜓 ∧ 𝜒)) ↔ ((𝜑 ∨ 𝜓) ∧ (𝜑 ∨ 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | jcab 507 | . 2 ⊢ ((¬ 𝜑 → (𝜓 ∧ 𝜒)) ↔ ((¬ 𝜑 → 𝜓) ∧ (¬ 𝜑 → 𝜒))) | |
2 | df-or 837 | . 2 ⊢ ((𝜑 ∨ (𝜓 ∧ 𝜒)) ↔ (¬ 𝜑 → (𝜓 ∧ 𝜒))) | |
3 | df-or 837 | . . 3 ⊢ ((𝜑 ∨ 𝜓) ↔ (¬ 𝜑 → 𝜓)) | |
4 | df-or 837 | . . 3 ⊢ ((𝜑 ∨ 𝜒) ↔ (¬ 𝜑 → 𝜒)) | |
5 | 3, 4 | anbi12i 612 | . 2 ⊢ (((𝜑 ∨ 𝜓) ∧ (𝜑 ∨ 𝜒)) ↔ ((¬ 𝜑 → 𝜓) ∧ (¬ 𝜑 → 𝜒))) |
6 | 1, 2, 5 | 3bitr4i 292 | 1 ⊢ ((𝜑 ∨ (𝜓 ∧ 𝜒)) ↔ ((𝜑 ∨ 𝜓) ∧ (𝜑 ∨ 𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∧ wa 382 ∨ wo 836 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 |
This theorem is referenced by: ordir 991 orddi 994 pm5.63 1005 pm4.43 1008 cadan 1696 undi 4023 undif3 4037 undif4 4178 elnn1uz2 11973 or3di 29647 ifpan23 38330 ifpidg 38362 ifpim123g 38371 |
Copyright terms: Public domain | W3C validator |