MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordfr Structured version   Visualization version   GIF version

Theorem ordfr 5776
Description: Epsilon is well-founded on an ordinal class. (Contributed by NM, 22-Apr-1994.)
Assertion
Ref Expression
ordfr (Ord 𝐴 → E Fr 𝐴)

Proof of Theorem ordfr
StepHypRef Expression
1 ordwe 5774 . 2 (Ord 𝐴 → E We 𝐴)
2 wefr 5133 . 2 ( E We 𝐴 → E Fr 𝐴)
31, 2syl 17 1 (Ord 𝐴 → E Fr 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   E cep 5057   Fr wfr 5099   We wwe 5101  Ord word 5760
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 197  df-an 385  df-we 5104  df-ord 5764
This theorem is referenced by:  ordirr  5779  tz7.7  5787  onfr  5801  bnj580  31109  bnj1053  31170  bnj1071  31171
  Copyright terms: Public domain W3C validator