![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ordelinel | Structured version Visualization version GIF version |
Description: The intersection of two ordinal classes is an element of a third if and only if either one of them is. (Contributed by David Moews, 1-May-2017.) (Proof shortened by JJ, 24-Sep-2021.) |
Ref | Expression |
---|---|
ordelinel | ⊢ ((Ord 𝐴 ∧ Ord 𝐵 ∧ Ord 𝐶) → ((𝐴 ∩ 𝐵) ∈ 𝐶 ↔ (𝐴 ∈ 𝐶 ∨ 𝐵 ∈ 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordtri2or3 5966 | . . . 4 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 = (𝐴 ∩ 𝐵) ∨ 𝐵 = (𝐴 ∩ 𝐵))) | |
2 | 1 | 3adant3 1126 | . . 3 ⊢ ((Ord 𝐴 ∧ Ord 𝐵 ∧ Ord 𝐶) → (𝐴 = (𝐴 ∩ 𝐵) ∨ 𝐵 = (𝐴 ∩ 𝐵))) |
3 | eleq1a 2845 | . . . 4 ⊢ ((𝐴 ∩ 𝐵) ∈ 𝐶 → (𝐴 = (𝐴 ∩ 𝐵) → 𝐴 ∈ 𝐶)) | |
4 | eleq1a 2845 | . . . 4 ⊢ ((𝐴 ∩ 𝐵) ∈ 𝐶 → (𝐵 = (𝐴 ∩ 𝐵) → 𝐵 ∈ 𝐶)) | |
5 | 3, 4 | orim12d 949 | . . 3 ⊢ ((𝐴 ∩ 𝐵) ∈ 𝐶 → ((𝐴 = (𝐴 ∩ 𝐵) ∨ 𝐵 = (𝐴 ∩ 𝐵)) → (𝐴 ∈ 𝐶 ∨ 𝐵 ∈ 𝐶))) |
6 | 2, 5 | syl5com 31 | . 2 ⊢ ((Ord 𝐴 ∧ Ord 𝐵 ∧ Ord 𝐶) → ((𝐴 ∩ 𝐵) ∈ 𝐶 → (𝐴 ∈ 𝐶 ∨ 𝐵 ∈ 𝐶))) |
7 | ordin 5895 | . . 3 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → Ord (𝐴 ∩ 𝐵)) | |
8 | inss1 3981 | . . . . 5 ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐴 | |
9 | ordtr2 5910 | . . . . 5 ⊢ ((Ord (𝐴 ∩ 𝐵) ∧ Ord 𝐶) → (((𝐴 ∩ 𝐵) ⊆ 𝐴 ∧ 𝐴 ∈ 𝐶) → (𝐴 ∩ 𝐵) ∈ 𝐶)) | |
10 | 8, 9 | mpani 676 | . . . 4 ⊢ ((Ord (𝐴 ∩ 𝐵) ∧ Ord 𝐶) → (𝐴 ∈ 𝐶 → (𝐴 ∩ 𝐵) ∈ 𝐶)) |
11 | inss2 3982 | . . . . 5 ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐵 | |
12 | ordtr2 5910 | . . . . 5 ⊢ ((Ord (𝐴 ∩ 𝐵) ∧ Ord 𝐶) → (((𝐴 ∩ 𝐵) ⊆ 𝐵 ∧ 𝐵 ∈ 𝐶) → (𝐴 ∩ 𝐵) ∈ 𝐶)) | |
13 | 11, 12 | mpani 676 | . . . 4 ⊢ ((Ord (𝐴 ∩ 𝐵) ∧ Ord 𝐶) → (𝐵 ∈ 𝐶 → (𝐴 ∩ 𝐵) ∈ 𝐶)) |
14 | 10, 13 | jaod 848 | . . 3 ⊢ ((Ord (𝐴 ∩ 𝐵) ∧ Ord 𝐶) → ((𝐴 ∈ 𝐶 ∨ 𝐵 ∈ 𝐶) → (𝐴 ∩ 𝐵) ∈ 𝐶)) |
15 | 7, 14 | stoic3 1849 | . 2 ⊢ ((Ord 𝐴 ∧ Ord 𝐵 ∧ Ord 𝐶) → ((𝐴 ∈ 𝐶 ∨ 𝐵 ∈ 𝐶) → (𝐴 ∩ 𝐵) ∈ 𝐶)) |
16 | 6, 15 | impbid 202 | 1 ⊢ ((Ord 𝐴 ∧ Ord 𝐵 ∧ Ord 𝐶) → ((𝐴 ∩ 𝐵) ∈ 𝐶 ↔ (𝐴 ∈ 𝐶 ∨ 𝐵 ∈ 𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 382 ∨ wo 836 ∧ w3a 1071 = wceq 1631 ∈ wcel 2145 ∩ cin 3722 ⊆ wss 3723 Ord word 5864 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4916 ax-nul 4924 ax-pr 5035 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3353 df-sbc 3588 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4227 df-sn 4318 df-pr 4320 df-op 4324 df-uni 4576 df-br 4788 df-opab 4848 df-tr 4888 df-eprel 5163 df-po 5171 df-so 5172 df-fr 5209 df-we 5211 df-ord 5868 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |