![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ord3ex | Structured version Visualization version GIF version |
Description: The ordinal number 3 is a set, proved without the Axiom of Union ax-un 6991. (Contributed by NM, 2-May-2009.) |
Ref | Expression |
---|---|
ord3ex | ⊢ {∅, {∅}, {∅, {∅}}} ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-tp 4215 | . 2 ⊢ {∅, {∅}, {∅, {∅}}} = ({∅, {∅}} ∪ {{∅, {∅}}}) | |
2 | pwpr 4462 | . . . 4 ⊢ 𝒫 {∅, {∅}} = ({∅, {∅}} ∪ {{{∅}}, {∅, {∅}}}) | |
3 | pp0ex 4885 | . . . . 5 ⊢ {∅, {∅}} ∈ V | |
4 | 3 | pwex 4878 | . . . 4 ⊢ 𝒫 {∅, {∅}} ∈ V |
5 | 2, 4 | eqeltrri 2727 | . . 3 ⊢ ({∅, {∅}} ∪ {{{∅}}, {∅, {∅}}}) ∈ V |
6 | snsspr2 4378 | . . . 4 ⊢ {{∅, {∅}}} ⊆ {{{∅}}, {∅, {∅}}} | |
7 | unss2 3817 | . . . 4 ⊢ ({{∅, {∅}}} ⊆ {{{∅}}, {∅, {∅}}} → ({∅, {∅}} ∪ {{∅, {∅}}}) ⊆ ({∅, {∅}} ∪ {{{∅}}, {∅, {∅}}})) | |
8 | 6, 7 | ax-mp 5 | . . 3 ⊢ ({∅, {∅}} ∪ {{∅, {∅}}}) ⊆ ({∅, {∅}} ∪ {{{∅}}, {∅, {∅}}}) |
9 | 5, 8 | ssexi 4836 | . 2 ⊢ ({∅, {∅}} ∪ {{∅, {∅}}}) ∈ V |
10 | 1, 9 | eqeltri 2726 | 1 ⊢ {∅, {∅}, {∅, {∅}}} ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2030 Vcvv 3231 ∪ cun 3605 ⊆ wss 3607 ∅c0 3948 𝒫 cpw 4191 {csn 4210 {cpr 4212 {ctp 4214 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ral 2946 df-v 3233 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |