![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > orcomd | Structured version Visualization version GIF version |
Description: Commutation of disjuncts in consequent. (Contributed by NM, 2-Dec-2010.) |
Ref | Expression |
---|---|
orcomd.1 | ⊢ (𝜑 → (𝜓 ∨ 𝜒)) |
Ref | Expression |
---|---|
orcomd | ⊢ (𝜑 → (𝜒 ∨ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orcomd.1 | . 2 ⊢ (𝜑 → (𝜓 ∨ 𝜒)) | |
2 | orcom 401 | . 2 ⊢ ((𝜓 ∨ 𝜒) ↔ (𝜒 ∨ 𝜓)) | |
3 | 1, 2 | sylib 208 | 1 ⊢ (𝜑 → (𝜒 ∨ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 382 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-or 384 |
This theorem is referenced by: olcd 407 19.33b 1853 swopo 5074 fr2nr 5121 ordtri1 5794 ordequn 5866 ssonprc 7034 ordunpr 7068 ordunisuc2 7086 2oconcl 7628 erdisj 7837 ordtypelem7 8470 ackbij1lem18 9097 fin23lem19 9196 gchi 9484 inar1 9635 inatsk 9638 avgle 11312 nnm1nn0 11372 uzsplit 12450 fzospliti 12539 fzouzsplit 12542 fz1f1o 14485 odcl 18001 gexcl 18041 lssvs0or 19158 lspdisj 19173 lspsncv0 19194 mdetralt 20462 filconn 21734 limccnp 23700 dgrlt 24067 logreclem 24545 atans2 24703 basellem3 24854 sqff1o 24953 tgcgrsub2 25535 legov3 25538 colline 25589 tglowdim2ln 25591 mirbtwnhl 25620 colmid 25628 symquadlem 25629 midexlem 25632 ragperp 25657 colperp 25666 midex 25674 oppperpex 25690 hlpasch 25693 colopp 25706 colhp 25707 lmieu 25721 lmicom 25725 lmimid 25731 lmiisolem 25733 trgcopy 25741 cgracgr 25755 cgraswap 25757 cgracol 25764 hashecclwwlkn1 27041 znsqcld 29640 xlt2addrd 29651 fprodex01 29699 esumcvgre 30281 eulerpartlemgvv 30566 ordtoplem 32559 ordcmp 32571 onsucuni3 33345 dvasin 33626 unitresr 34015 lkrshp4 34713 2at0mat0 35129 trlator0 35776 dia2dimlem2 36671 dia2dimlem3 36672 dochkrshp 36992 dochkrshp4 36995 lcfl6 37106 lclkrlem2k 37123 hdmap14lem6 37482 hgmapval0 37501 acongneg2 37861 unxpwdom3 37982 elunnel2 39512 disjinfi 39694 xrssre 39877 icccncfext 40418 wallispilem3 40602 fourierdlem93 40734 fourierdlem101 40742 nneop 42645 |
Copyright terms: Public domain | W3C validator |