![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > orcanai | Structured version Visualization version GIF version |
Description: Change disjunction in consequent to conjunction in antecedent. (Contributed by NM, 8-Jun-1994.) |
Ref | Expression |
---|---|
orcanai.1 | ⊢ (𝜑 → (𝜓 ∨ 𝜒)) |
Ref | Expression |
---|---|
orcanai | ⊢ ((𝜑 ∧ ¬ 𝜓) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orcanai.1 | . . 3 ⊢ (𝜑 → (𝜓 ∨ 𝜒)) | |
2 | 1 | ord 391 | . 2 ⊢ (𝜑 → (¬ 𝜓 → 𝜒)) |
3 | 2 | imp 444 | 1 ⊢ ((𝜑 ∧ ¬ 𝜓) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∨ wo 382 ∧ wa 383 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 |
This theorem is referenced by: elunnel1 3898 bren2 8155 php 8312 unxpdomlem3 8334 tcrank 8923 dfac12lem1 9178 dfac12lem2 9179 ttukeylem3 9546 ttukeylem5 9548 ttukeylem6 9549 xrmax2 12221 xrmin1 12222 xrge0nre 12491 ccatco 13802 pcgcd 15805 mreexexd 16531 tsrlemax 17442 gsumval2 17502 xrsdsreval 20014 xrsdsreclb 20016 xrsxmet 22834 elii2 22957 xrhmeo 22967 pcoass 23045 limccnp 23875 logreclem 24721 eldmgm 24969 lgsdir2 25276 colmid 25804 lmiisolem 25909 elpreq 29689 esumcvgre 30484 eulerpartlemgvv 30769 ballotlem2 30881 lclkrlem2h 37324 aomclem5 38149 cvgdvgrat 39033 bccbc 39065 elunnel2 39716 stoweidlem26 40765 stoweidlem34 40773 fourierswlem 40969 |
Copyright terms: Public domain | W3C validator |