![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > orbi1i | Structured version Visualization version GIF version |
Description: Inference adding a right disjunct to both sides of a logical equivalence. (Contributed by NM, 3-Jan-1993.) |
Ref | Expression |
---|---|
orbi2i.1 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
orbi1i | ⊢ ((𝜑 ∨ 𝜒) ↔ (𝜓 ∨ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orcom 401 | . 2 ⊢ ((𝜑 ∨ 𝜒) ↔ (𝜒 ∨ 𝜑)) | |
2 | orbi2i.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
3 | 2 | orbi2i 540 | . 2 ⊢ ((𝜒 ∨ 𝜑) ↔ (𝜒 ∨ 𝜓)) |
4 | orcom 401 | . 2 ⊢ ((𝜒 ∨ 𝜓) ↔ (𝜓 ∨ 𝜒)) | |
5 | 1, 3, 4 | 3bitri 286 | 1 ⊢ ((𝜑 ∨ 𝜒) ↔ (𝜓 ∨ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∨ wo 382 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-or 384 |
This theorem is referenced by: orbi12i 542 orordi 551 3anorOLD 1072 3ianor 1074 3or6 1450 cadan 1588 nfnbi 1821 19.45v 1969 19.45 2145 unass 3803 tz7.48lem 7581 dffin7-2 9258 zorng 9364 entri2 9418 grothprim 9694 leloe 10162 arch 11327 elznn0nn 11429 xrleloe 12015 ressval3d 15984 opsrtoslem1 19532 fctop2 20857 alexsubALTlem3 21900 colinearalg 25835 numclwwlk3lem 27371 disjnf 29510 ballotlemfc0 30682 ballotlemfcc 30683 noextenddif 31946 sleloe 32004 ordcmp 32571 poimirlem21 33560 ovoliunnfl 33581 biimpor 34013 tsim1 34067 leatb 34897 expdioph 37907 ifpim123g 38162 ifpimimb 38166 ifpororb 38167 rp-fakeinunass 38178 andi3or 38637 uneqsn 38638 sbc3or 39055 en3lpVD 39394 el1fzopredsuc 41660 iccpartgt 41688 fmtno4prmfac 41809 ldepspr 42587 |
Copyright terms: Public domain | W3C validator |