MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  or4 Structured version   Visualization version   GIF version

Theorem or4 912
Description: Rearrangement of 4 disjuncts. (Contributed by NM, 12-Aug-1994.)
Assertion
Ref Expression
or4 (((𝜑𝜓) ∨ (𝜒𝜃)) ↔ ((𝜑𝜒) ∨ (𝜓𝜃)))

Proof of Theorem or4
StepHypRef Expression
1 or12 906 . . 3 ((𝜓 ∨ (𝜒𝜃)) ↔ (𝜒 ∨ (𝜓𝜃)))
21orbi2i 898 . 2 ((𝜑 ∨ (𝜓 ∨ (𝜒𝜃))) ↔ (𝜑 ∨ (𝜒 ∨ (𝜓𝜃))))
3 orass 907 . 2 (((𝜑𝜓) ∨ (𝜒𝜃)) ↔ (𝜑 ∨ (𝜓 ∨ (𝜒𝜃))))
4 orass 907 . 2 (((𝜑𝜒) ∨ (𝜓𝜃)) ↔ (𝜑 ∨ (𝜒 ∨ (𝜓𝜃))))
52, 3, 43bitr4i 292 1 (((𝜑𝜓) ∨ (𝜒𝜃)) ↔ ((𝜑𝜒) ∨ (𝜓𝜃)))
Colors of variables: wff setvar class
Syntax hints:  wb 196  wo 836
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 197  df-or 837
This theorem is referenced by:  or42  913  orordi  914  orordir  915  3or6  1558  swoer  7930  xmullem2  12300  clsk1indlem3  38867
  Copyright terms: Public domain W3C validator