Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  opwo0id Structured version   Visualization version   GIF version

Theorem opwo0id 4990
 Description: An ordered pair is equal to the ordered pair without the empty set. This is because no ordered pair contains the empty set. (Contributed by AV, 15-Nov-2021.)
Assertion
Ref Expression
opwo0id 𝑋, 𝑌⟩ = (⟨𝑋, 𝑌⟩ ∖ {∅})

Proof of Theorem opwo0id
StepHypRef Expression
1 0nelop 4989 . . . 4 ¬ ∅ ∈ ⟨𝑋, 𝑌
2 disjsn 4278 . . . 4 ((⟨𝑋, 𝑌⟩ ∩ {∅}) = ∅ ↔ ¬ ∅ ∈ ⟨𝑋, 𝑌⟩)
31, 2mpbir 221 . . 3 (⟨𝑋, 𝑌⟩ ∩ {∅}) = ∅
4 disjdif2 4080 . . 3 ((⟨𝑋, 𝑌⟩ ∩ {∅}) = ∅ → (⟨𝑋, 𝑌⟩ ∖ {∅}) = ⟨𝑋, 𝑌⟩)
53, 4ax-mp 5 . 2 (⟨𝑋, 𝑌⟩ ∖ {∅}) = ⟨𝑋, 𝑌
65eqcomi 2660 1 𝑋, 𝑌⟩ = (⟨𝑋, 𝑌⟩ ∖ {∅})
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   = wceq 1523   ∈ wcel 2030   ∖ cdif 3604   ∩ cin 3606  ∅c0 3948  {csn 4210  ⟨cop 4216 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rab 2950  df-v 3233  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-sn 4211  df-pr 4213  df-op 4217 This theorem is referenced by:  fundmge2nop0  13312
 Copyright terms: Public domain W3C validator