![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > opvtxfv | Structured version Visualization version GIF version |
Description: The set of vertices of a graph represented as an ordered pair of vertices and indexed edges as function value. (Contributed by AV, 21-Sep-2020.) |
Ref | Expression |
---|---|
opvtxfv | ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → (Vtx‘〈𝑉, 𝐸〉) = 𝑉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelvvg 5305 | . . 3 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → 〈𝑉, 𝐸〉 ∈ (V × V)) | |
2 | opvtxval 26104 | . . 3 ⊢ (〈𝑉, 𝐸〉 ∈ (V × V) → (Vtx‘〈𝑉, 𝐸〉) = (1st ‘〈𝑉, 𝐸〉)) | |
3 | 1, 2 | syl 17 | . 2 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → (Vtx‘〈𝑉, 𝐸〉) = (1st ‘〈𝑉, 𝐸〉)) |
4 | op1stg 7327 | . 2 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → (1st ‘〈𝑉, 𝐸〉) = 𝑉) | |
5 | 3, 4 | eqtrd 2805 | 1 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝐸 ∈ 𝑌) → (Vtx‘〈𝑉, 𝐸〉) = 𝑉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 = wceq 1631 ∈ wcel 2145 Vcvv 3351 〈cop 4322 × cxp 5247 ‘cfv 6031 1st c1st 7313 Vtxcvtx 26095 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 835 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3353 df-sbc 3588 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4226 df-sn 4317 df-pr 4319 df-op 4323 df-uni 4575 df-br 4787 df-opab 4847 df-mpt 4864 df-id 5157 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-iota 5994 df-fun 6033 df-fv 6039 df-1st 7315 df-vtx 26097 |
This theorem is referenced by: opvtxov 26106 opvtxfvi 26110 graop 26142 gropd 26144 isuhgrop 26186 uhgrunop 26191 upgrop 26210 upgr1eop 26231 upgrunop 26235 umgrunop 26237 isuspgrop 26278 isusgrop 26279 ausgrusgrb 26282 uspgr1eop 26362 usgr1eop 26365 usgrexmpllem 26375 uhgrspanop 26411 uhgrspan1lem2 26416 upgrres1lem2 26426 opfusgr 26438 fusgrfisbase 26443 fusgrfisstep 26444 usgrexi 26572 cusgrexi 26574 fusgrmaxsize 26595 p1evtxdeqlem 26643 p1evtxdeq 26644 p1evtxdp1 26645 uspgrloopvtx 26646 umgr2v2evtx 26652 wlk2v2e 27337 eupthvdres 27415 eupth2lemb 27417 konigsbergvtx 27426 konigsberg 27437 uspgrsprfo 42284 |
Copyright terms: Public domain | W3C validator |