![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > optocl | Structured version Visualization version GIF version |
Description: Implicit substitution of class for ordered pair. (Contributed by NM, 5-Mar-1995.) |
Ref | Expression |
---|---|
optocl.1 | ⊢ 𝐷 = (𝐵 × 𝐶) |
optocl.2 | ⊢ (〈𝑥, 𝑦〉 = 𝐴 → (𝜑 ↔ 𝜓)) |
optocl.3 | ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶) → 𝜑) |
Ref | Expression |
---|---|
optocl | ⊢ (𝐴 ∈ 𝐷 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elxp3 5326 | . . 3 ⊢ (𝐴 ∈ (𝐵 × 𝐶) ↔ ∃𝑥∃𝑦(〈𝑥, 𝑦〉 = 𝐴 ∧ 〈𝑥, 𝑦〉 ∈ (𝐵 × 𝐶))) | |
2 | opelxp 5303 | . . . . . . 7 ⊢ (〈𝑥, 𝑦〉 ∈ (𝐵 × 𝐶) ↔ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) | |
3 | optocl.3 | . . . . . . 7 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶) → 𝜑) | |
4 | 2, 3 | sylbi 207 | . . . . . 6 ⊢ (〈𝑥, 𝑦〉 ∈ (𝐵 × 𝐶) → 𝜑) |
5 | optocl.2 | . . . . . 6 ⊢ (〈𝑥, 𝑦〉 = 𝐴 → (𝜑 ↔ 𝜓)) | |
6 | 4, 5 | syl5ib 234 | . . . . 5 ⊢ (〈𝑥, 𝑦〉 = 𝐴 → (〈𝑥, 𝑦〉 ∈ (𝐵 × 𝐶) → 𝜓)) |
7 | 6 | imp 444 | . . . 4 ⊢ ((〈𝑥, 𝑦〉 = 𝐴 ∧ 〈𝑥, 𝑦〉 ∈ (𝐵 × 𝐶)) → 𝜓) |
8 | 7 | exlimivv 2009 | . . 3 ⊢ (∃𝑥∃𝑦(〈𝑥, 𝑦〉 = 𝐴 ∧ 〈𝑥, 𝑦〉 ∈ (𝐵 × 𝐶)) → 𝜓) |
9 | 1, 8 | sylbi 207 | . 2 ⊢ (𝐴 ∈ (𝐵 × 𝐶) → 𝜓) |
10 | optocl.1 | . 2 ⊢ 𝐷 = (𝐵 × 𝐶) | |
11 | 9, 10 | eleq2s 2857 | 1 ⊢ (𝐴 ∈ 𝐷 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1632 ∃wex 1853 ∈ wcel 2139 〈cop 4327 × cxp 5264 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pr 5055 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-sn 4322 df-pr 4324 df-op 4328 df-opab 4865 df-xp 5272 |
This theorem is referenced by: 2optocl 5353 3optocl 5354 ecoptocl 8006 ax1rid 10194 axcnre 10197 |
Copyright terms: Public domain | W3C validator |