![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > opthregOLD | Structured version Visualization version GIF version |
Description: Obsolete proof of opthreg 8676 as of 15-Jun-2022. Theorem for alternate representation of ordered pairs, requiring the Axiom of Regularity ax-reg 8652 (via the preleqOLD 8677 step). See df-op 4321 for a description of other ordered pair representations. Exercise 34 of [Enderton] p. 207. (Contributed by NM, 16-Oct-1996.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
opthreg.1 | ⊢ 𝐴 ∈ V |
opthreg.2 | ⊢ 𝐵 ∈ V |
opthreg.3 | ⊢ 𝐶 ∈ V |
opthreg.4 | ⊢ 𝐷 ∈ V |
Ref | Expression |
---|---|
opthregOLD | ⊢ ({𝐴, {𝐴, 𝐵}} = {𝐶, {𝐶, 𝐷}} ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opthreg.1 | . . . . 5 ⊢ 𝐴 ∈ V | |
2 | 1 | prid1 4431 | . . . 4 ⊢ 𝐴 ∈ {𝐴, 𝐵} |
3 | opthreg.3 | . . . . 5 ⊢ 𝐶 ∈ V | |
4 | 3 | prid1 4431 | . . . 4 ⊢ 𝐶 ∈ {𝐶, 𝐷} |
5 | prex 5037 | . . . . 5 ⊢ {𝐴, 𝐵} ∈ V | |
6 | prex 5037 | . . . . 5 ⊢ {𝐶, 𝐷} ∈ V | |
7 | 1, 5, 3, 6 | preleqOLD 8677 | . . . 4 ⊢ (((𝐴 ∈ {𝐴, 𝐵} ∧ 𝐶 ∈ {𝐶, 𝐷}) ∧ {𝐴, {𝐴, 𝐵}} = {𝐶, {𝐶, 𝐷}}) → (𝐴 = 𝐶 ∧ {𝐴, 𝐵} = {𝐶, 𝐷})) |
8 | 2, 4, 7 | mpanl12 674 | . . 3 ⊢ ({𝐴, {𝐴, 𝐵}} = {𝐶, {𝐶, 𝐷}} → (𝐴 = 𝐶 ∧ {𝐴, 𝐵} = {𝐶, 𝐷})) |
9 | preq1 4402 | . . . . . 6 ⊢ (𝐴 = 𝐶 → {𝐴, 𝐵} = {𝐶, 𝐵}) | |
10 | 9 | eqeq1d 2772 | . . . . 5 ⊢ (𝐴 = 𝐶 → ({𝐴, 𝐵} = {𝐶, 𝐷} ↔ {𝐶, 𝐵} = {𝐶, 𝐷})) |
11 | opthreg.2 | . . . . . 6 ⊢ 𝐵 ∈ V | |
12 | opthreg.4 | . . . . . 6 ⊢ 𝐷 ∈ V | |
13 | 11, 12 | preqr2 4510 | . . . . 5 ⊢ ({𝐶, 𝐵} = {𝐶, 𝐷} → 𝐵 = 𝐷) |
14 | 10, 13 | syl6bi 243 | . . . 4 ⊢ (𝐴 = 𝐶 → ({𝐴, 𝐵} = {𝐶, 𝐷} → 𝐵 = 𝐷)) |
15 | 14 | imdistani 550 | . . 3 ⊢ ((𝐴 = 𝐶 ∧ {𝐴, 𝐵} = {𝐶, 𝐷}) → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) |
16 | 8, 15 | syl 17 | . 2 ⊢ ({𝐴, {𝐴, 𝐵}} = {𝐶, {𝐶, 𝐷}} → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) |
17 | preq1 4402 | . . . 4 ⊢ (𝐴 = 𝐶 → {𝐴, {𝐴, 𝐵}} = {𝐶, {𝐴, 𝐵}}) | |
18 | 17 | adantr 466 | . . 3 ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → {𝐴, {𝐴, 𝐵}} = {𝐶, {𝐴, 𝐵}}) |
19 | preq12 4404 | . . . 4 ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → {𝐴, 𝐵} = {𝐶, 𝐷}) | |
20 | 19 | preq2d 4409 | . . 3 ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → {𝐶, {𝐴, 𝐵}} = {𝐶, {𝐶, 𝐷}}) |
21 | 18, 20 | eqtrd 2804 | . 2 ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → {𝐴, {𝐴, 𝐵}} = {𝐶, {𝐶, 𝐷}}) |
22 | 16, 21 | impbii 199 | 1 ⊢ ({𝐴, {𝐴, 𝐵}} = {𝐶, {𝐶, 𝐷}} ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∧ wa 382 = wceq 1630 ∈ wcel 2144 Vcvv 3349 {cpr 4316 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-sep 4912 ax-nul 4920 ax-pr 5034 ax-reg 8652 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-ral 3065 df-rex 3066 df-rab 3069 df-v 3351 df-sbc 3586 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-nul 4062 df-if 4224 df-sn 4315 df-pr 4317 df-op 4321 df-br 4785 df-opab 4845 df-eprel 5162 df-fr 5208 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |