MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opthreg Structured version   Visualization version   GIF version

Theorem opthreg 8677
Description: Theorem for alternate representation of ordered pairs, requiring the Axiom of Regularity ax-reg 8653 (via the preleq 8675 step). See df-op 4323 for a description of other ordered pair representations. Exercise 34 of [Enderton] p. 207. (Contributed by NM, 16-Oct-1996.) (Proof shortened by AV, 15-Jun-2022.)
Hypotheses
Ref Expression
opthreg.1 𝐴 ∈ V
opthreg.2 𝐵 ∈ V
opthreg.3 𝐶 ∈ V
opthreg.4 𝐷 ∈ V
Assertion
Ref Expression
opthreg ({𝐴, {𝐴, 𝐵}} = {𝐶, {𝐶, 𝐷}} ↔ (𝐴 = 𝐶𝐵 = 𝐷))

Proof of Theorem opthreg
StepHypRef Expression
1 opthreg.1 . . . . 5 𝐴 ∈ V
21prid1 4433 . . . 4 𝐴 ∈ {𝐴, 𝐵}
3 opthreg.3 . . . . 5 𝐶 ∈ V
43prid1 4433 . . . 4 𝐶 ∈ {𝐶, 𝐷}
5 prex 5037 . . . . 5 {𝐴, 𝐵} ∈ V
65preleq 8675 . . . 4 (((𝐴 ∈ {𝐴, 𝐵} ∧ 𝐶 ∈ {𝐶, 𝐷}) ∧ {𝐴, {𝐴, 𝐵}} = {𝐶, {𝐶, 𝐷}}) → (𝐴 = 𝐶 ∧ {𝐴, 𝐵} = {𝐶, 𝐷}))
72, 4, 6mpanl12 682 . . 3 ({𝐴, {𝐴, 𝐵}} = {𝐶, {𝐶, 𝐷}} → (𝐴 = 𝐶 ∧ {𝐴, 𝐵} = {𝐶, 𝐷}))
8 preq1 4404 . . . . . 6 (𝐴 = 𝐶 → {𝐴, 𝐵} = {𝐶, 𝐵})
98eqeq1d 2773 . . . . 5 (𝐴 = 𝐶 → ({𝐴, 𝐵} = {𝐶, 𝐷} ↔ {𝐶, 𝐵} = {𝐶, 𝐷}))
10 opthreg.2 . . . . . 6 𝐵 ∈ V
11 opthreg.4 . . . . . 6 𝐷 ∈ V
1210, 11preqr2 4512 . . . . 5 ({𝐶, 𝐵} = {𝐶, 𝐷} → 𝐵 = 𝐷)
139, 12syl6bi 243 . . . 4 (𝐴 = 𝐶 → ({𝐴, 𝐵} = {𝐶, 𝐷} → 𝐵 = 𝐷))
1413imdistani 558 . . 3 ((𝐴 = 𝐶 ∧ {𝐴, 𝐵} = {𝐶, 𝐷}) → (𝐴 = 𝐶𝐵 = 𝐷))
157, 14syl 17 . 2 ({𝐴, {𝐴, 𝐵}} = {𝐶, {𝐶, 𝐷}} → (𝐴 = 𝐶𝐵 = 𝐷))
16 preq1 4404 . . . 4 (𝐴 = 𝐶 → {𝐴, {𝐴, 𝐵}} = {𝐶, {𝐴, 𝐵}})
1716adantr 466 . . 3 ((𝐴 = 𝐶𝐵 = 𝐷) → {𝐴, {𝐴, 𝐵}} = {𝐶, {𝐴, 𝐵}})
18 preq12 4406 . . . 4 ((𝐴 = 𝐶𝐵 = 𝐷) → {𝐴, 𝐵} = {𝐶, 𝐷})
1918preq2d 4411 . . 3 ((𝐴 = 𝐶𝐵 = 𝐷) → {𝐶, {𝐴, 𝐵}} = {𝐶, {𝐶, 𝐷}})
2017, 19eqtrd 2805 . 2 ((𝐴 = 𝐶𝐵 = 𝐷) → {𝐴, {𝐴, 𝐵}} = {𝐶, {𝐶, 𝐷}})
2115, 20impbii 199 1 ({𝐴, {𝐴, 𝐵}} = {𝐶, {𝐶, 𝐷}} ↔ (𝐴 = 𝐶𝐵 = 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 382   = wceq 1631  wcel 2145  Vcvv 3351  {cpr 4318
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pr 5034  ax-reg 8653
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 835  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3353  df-sbc 3588  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4226  df-sn 4317  df-pr 4319  df-op 4323  df-br 4787  df-opab 4847  df-eprel 5162  df-fr 5208
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator