MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opth2 Structured version   Visualization version   GIF version

Theorem opth2 4914
Description: Ordered pair theorem. (Contributed by NM, 21-Sep-2014.)
Hypotheses
Ref Expression
opth2.1 𝐶 ∈ V
opth2.2 𝐷 ∈ V
Assertion
Ref Expression
opth2 (⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩ ↔ (𝐴 = 𝐶𝐵 = 𝐷))

Proof of Theorem opth2
StepHypRef Expression
1 opth2.1 . 2 𝐶 ∈ V
2 opth2.2 . 2 𝐷 ∈ V
3 opthg2 4913 . 2 ((𝐶 ∈ V ∧ 𝐷 ∈ V) → (⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩ ↔ (𝐴 = 𝐶𝐵 = 𝐷)))
41, 2, 3mp2an 707 1 (⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩ ↔ (𝐴 = 𝐶𝐵 = 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 384   = wceq 1480  wcel 1992  Vcvv 3191  cop 4159
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-sep 4746  ax-nul 4754  ax-pr 4872
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-rab 2921  df-v 3193  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-nul 3897  df-if 4064  df-sn 4154  df-pr 4156  df-op 4160
This theorem is referenced by:  eqvinop  4920  opelxp  5111  fsn  6357  opiota  7175  canthwe  9418  ltresr  9906  mat1dimelbas  20191  fmucndlem  22000  diblsmopel  35907  cdlemn7  35939  dihordlem7  35950  xihopellsmN  35990  dihopellsm  35991  dihpN  36072
  Copyright terms: Public domain W3C validator