 Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  opth1g Structured version   Visualization version   GIF version

Theorem opth1g 4917
 Description: Equality of the first members of equal ordered pairs. Closed form of opth1 4914. (Contributed by AV, 14-Oct-2018.)
Assertion
Ref Expression
opth1g ((𝐴𝑉𝐵𝑊) → (⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩ → 𝐴 = 𝐶))

Proof of Theorem opth1g
StepHypRef Expression
1 opthg 4916 . 2 ((𝐴𝑉𝐵𝑊) → (⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩ ↔ (𝐴 = 𝐶𝐵 = 𝐷)))
2 simpl 473 . 2 ((𝐴 = 𝐶𝐵 = 𝐷) → 𝐴 = 𝐶)
31, 2syl6bi 243 1 ((𝐴𝑉𝐵𝑊) → (⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩ → 𝐴 = 𝐶))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 384   = wceq 1480   ∈ wcel 1987  ⟨cop 4161 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4751  ax-nul 4759  ax-pr 4877 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-rab 2917  df-v 3192  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-nul 3898  df-if 4065  df-sn 4156  df-pr 4158  df-op 4162 This theorem is referenced by:  wrdlen2i  13636
 Copyright terms: Public domain W3C validator