MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opsrval Structured version   Visualization version   GIF version

Theorem opsrval 19668
Description: The value of the "ordered power series" function. This is the same as mPwSer psrval 19556, but with the addition of a well-order on 𝐼 we can turn a strict order on 𝑅 into a strict order on the power series structure. (Contributed by Mario Carneiro, 8-Feb-2015.)
Hypotheses
Ref Expression
opsrval.s 𝑆 = (𝐼 mPwSer 𝑅)
opsrval.o 𝑂 = ((𝐼 ordPwSer 𝑅)‘𝑇)
opsrval.b 𝐵 = (Base‘𝑆)
opsrval.q < = (lt‘𝑅)
opsrval.c 𝐶 = (𝑇 <bag 𝐼)
opsrval.d 𝐷 = { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin}
opsrval.l = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ (∃𝑧𝐷 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐷 (𝑤𝐶𝑧 → (𝑥𝑤) = (𝑦𝑤))) ∨ 𝑥 = 𝑦))}
opsrval.i (𝜑𝐼𝑉)
opsrval.r (𝜑𝑅𝑊)
opsrval.t (𝜑𝑇 ⊆ (𝐼 × 𝐼))
Assertion
Ref Expression
opsrval (𝜑𝑂 = (𝑆 sSet ⟨(le‘ndx), ⟩))
Distinct variable groups:   𝑤,,𝑥,𝑦,𝑧,𝐼   𝜑,𝑤,𝑥,𝑦,𝑧   𝑤,𝐷,𝑧   𝑤,𝑇,𝑥,𝑦,𝑧   𝑤,𝑅,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑()   𝐵(𝑥,𝑦,𝑧,𝑤,)   𝐶(𝑥,𝑦,𝑧,𝑤,)   𝐷(𝑥,𝑦,)   𝑅()   𝑆(𝑥,𝑦,𝑧,𝑤,)   < (𝑥,𝑦,𝑧,𝑤,)   𝑇()   (𝑥,𝑦,𝑧,𝑤,)   𝑂(𝑥,𝑦,𝑧,𝑤,)   𝑉(𝑥,𝑦,𝑧,𝑤,)   𝑊(𝑥,𝑦,𝑧,𝑤,)

Proof of Theorem opsrval
Dummy variables 𝑟 𝑖 𝑝 𝑠 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opsrval.o . 2 𝑂 = ((𝐼 ordPwSer 𝑅)‘𝑇)
2 opsrval.i . . . . 5 (𝜑𝐼𝑉)
3 elex 3344 . . . . 5 (𝐼𝑉𝐼 ∈ V)
42, 3syl 17 . . . 4 (𝜑𝐼 ∈ V)
5 opsrval.r . . . . 5 (𝜑𝑅𝑊)
6 elex 3344 . . . . 5 (𝑅𝑊𝑅 ∈ V)
75, 6syl 17 . . . 4 (𝜑𝑅 ∈ V)
8 xpexg 7117 . . . . . 6 ((𝐼𝑉𝐼𝑉) → (𝐼 × 𝐼) ∈ V)
92, 2, 8syl2anc 696 . . . . 5 (𝜑 → (𝐼 × 𝐼) ∈ V)
10 pwexg 4991 . . . . 5 ((𝐼 × 𝐼) ∈ V → 𝒫 (𝐼 × 𝐼) ∈ V)
11 mptexg 6640 . . . . 5 (𝒫 (𝐼 × 𝐼) ∈ V → (𝑟 ∈ 𝒫 (𝐼 × 𝐼) ↦ (𝑆 sSet ⟨(le‘ndx), {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ (∃𝑧𝐷 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐷 (𝑤(𝑟 <bag 𝐼)𝑧 → (𝑥𝑤) = (𝑦𝑤))) ∨ 𝑥 = 𝑦))}⟩)) ∈ V)
129, 10, 113syl 18 . . . 4 (𝜑 → (𝑟 ∈ 𝒫 (𝐼 × 𝐼) ↦ (𝑆 sSet ⟨(le‘ndx), {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ (∃𝑧𝐷 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐷 (𝑤(𝑟 <bag 𝐼)𝑧 → (𝑥𝑤) = (𝑦𝑤))) ∨ 𝑥 = 𝑦))}⟩)) ∈ V)
13 simpl 474 . . . . . . . 8 ((𝑖 = 𝐼𝑠 = 𝑅) → 𝑖 = 𝐼)
1413sqxpeqd 5290 . . . . . . 7 ((𝑖 = 𝐼𝑠 = 𝑅) → (𝑖 × 𝑖) = (𝐼 × 𝐼))
1514pweqd 4299 . . . . . 6 ((𝑖 = 𝐼𝑠 = 𝑅) → 𝒫 (𝑖 × 𝑖) = 𝒫 (𝐼 × 𝐼))
16 ovexd 6835 . . . . . . 7 ((𝑖 = 𝐼𝑠 = 𝑅) → (𝑖 mPwSer 𝑠) ∈ V)
17 id 22 . . . . . . . . . 10 (𝑝 = (𝑖 mPwSer 𝑠) → 𝑝 = (𝑖 mPwSer 𝑠))
18 oveq12 6814 . . . . . . . . . 10 ((𝑖 = 𝐼𝑠 = 𝑅) → (𝑖 mPwSer 𝑠) = (𝐼 mPwSer 𝑅))
1917, 18sylan9eqr 2808 . . . . . . . . 9 (((𝑖 = 𝐼𝑠 = 𝑅) ∧ 𝑝 = (𝑖 mPwSer 𝑠)) → 𝑝 = (𝐼 mPwSer 𝑅))
20 opsrval.s . . . . . . . . 9 𝑆 = (𝐼 mPwSer 𝑅)
2119, 20syl6eqr 2804 . . . . . . . 8 (((𝑖 = 𝐼𝑠 = 𝑅) ∧ 𝑝 = (𝑖 mPwSer 𝑠)) → 𝑝 = 𝑆)
2221fveq2d 6348 . . . . . . . . . . . . 13 (((𝑖 = 𝐼𝑠 = 𝑅) ∧ 𝑝 = (𝑖 mPwSer 𝑠)) → (Base‘𝑝) = (Base‘𝑆))
23 opsrval.b . . . . . . . . . . . . 13 𝐵 = (Base‘𝑆)
2422, 23syl6eqr 2804 . . . . . . . . . . . 12 (((𝑖 = 𝐼𝑠 = 𝑅) ∧ 𝑝 = (𝑖 mPwSer 𝑠)) → (Base‘𝑝) = 𝐵)
2524sseq2d 3766 . . . . . . . . . . 11 (((𝑖 = 𝐼𝑠 = 𝑅) ∧ 𝑝 = (𝑖 mPwSer 𝑠)) → ({𝑥, 𝑦} ⊆ (Base‘𝑝) ↔ {𝑥, 𝑦} ⊆ 𝐵))
26 ovex 6833 . . . . . . . . . . . . . . 15 (ℕ0𝑚 𝑖) ∈ V
2726rabex 4956 . . . . . . . . . . . . . 14 { ∈ (ℕ0𝑚 𝑖) ∣ ( “ ℕ) ∈ Fin} ∈ V
2827a1i 11 . . . . . . . . . . . . 13 (((𝑖 = 𝐼𝑠 = 𝑅) ∧ 𝑝 = (𝑖 mPwSer 𝑠)) → { ∈ (ℕ0𝑚 𝑖) ∣ ( “ ℕ) ∈ Fin} ∈ V)
2913adantr 472 . . . . . . . . . . . . . . . 16 (((𝑖 = 𝐼𝑠 = 𝑅) ∧ 𝑝 = (𝑖 mPwSer 𝑠)) → 𝑖 = 𝐼)
3029oveq2d 6821 . . . . . . . . . . . . . . 15 (((𝑖 = 𝐼𝑠 = 𝑅) ∧ 𝑝 = (𝑖 mPwSer 𝑠)) → (ℕ0𝑚 𝑖) = (ℕ0𝑚 𝐼))
31 rabeq 3324 . . . . . . . . . . . . . . 15 ((ℕ0𝑚 𝑖) = (ℕ0𝑚 𝐼) → { ∈ (ℕ0𝑚 𝑖) ∣ ( “ ℕ) ∈ Fin} = { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin})
3230, 31syl 17 . . . . . . . . . . . . . 14 (((𝑖 = 𝐼𝑠 = 𝑅) ∧ 𝑝 = (𝑖 mPwSer 𝑠)) → { ∈ (ℕ0𝑚 𝑖) ∣ ( “ ℕ) ∈ Fin} = { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin})
33 opsrval.d . . . . . . . . . . . . . 14 𝐷 = { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin}
3432, 33syl6eqr 2804 . . . . . . . . . . . . 13 (((𝑖 = 𝐼𝑠 = 𝑅) ∧ 𝑝 = (𝑖 mPwSer 𝑠)) → { ∈ (ℕ0𝑚 𝑖) ∣ ( “ ℕ) ∈ Fin} = 𝐷)
35 simpr 479 . . . . . . . . . . . . . 14 ((((𝑖 = 𝐼𝑠 = 𝑅) ∧ 𝑝 = (𝑖 mPwSer 𝑠)) ∧ 𝑑 = 𝐷) → 𝑑 = 𝐷)
36 simpllr 817 . . . . . . . . . . . . . . . . . 18 ((((𝑖 = 𝐼𝑠 = 𝑅) ∧ 𝑝 = (𝑖 mPwSer 𝑠)) ∧ 𝑑 = 𝐷) → 𝑠 = 𝑅)
3736fveq2d 6348 . . . . . . . . . . . . . . . . 17 ((((𝑖 = 𝐼𝑠 = 𝑅) ∧ 𝑝 = (𝑖 mPwSer 𝑠)) ∧ 𝑑 = 𝐷) → (lt‘𝑠) = (lt‘𝑅))
38 opsrval.q . . . . . . . . . . . . . . . . 17 < = (lt‘𝑅)
3937, 38syl6eqr 2804 . . . . . . . . . . . . . . . 16 ((((𝑖 = 𝐼𝑠 = 𝑅) ∧ 𝑝 = (𝑖 mPwSer 𝑠)) ∧ 𝑑 = 𝐷) → (lt‘𝑠) = < )
4039breqd 4807 . . . . . . . . . . . . . . 15 ((((𝑖 = 𝐼𝑠 = 𝑅) ∧ 𝑝 = (𝑖 mPwSer 𝑠)) ∧ 𝑑 = 𝐷) → ((𝑥𝑧)(lt‘𝑠)(𝑦𝑧) ↔ (𝑥𝑧) < (𝑦𝑧)))
4129adantr 472 . . . . . . . . . . . . . . . . . . 19 ((((𝑖 = 𝐼𝑠 = 𝑅) ∧ 𝑝 = (𝑖 mPwSer 𝑠)) ∧ 𝑑 = 𝐷) → 𝑖 = 𝐼)
4241oveq2d 6821 . . . . . . . . . . . . . . . . . 18 ((((𝑖 = 𝐼𝑠 = 𝑅) ∧ 𝑝 = (𝑖 mPwSer 𝑠)) ∧ 𝑑 = 𝐷) → (𝑟 <bag 𝑖) = (𝑟 <bag 𝐼))
4342breqd 4807 . . . . . . . . . . . . . . . . 17 ((((𝑖 = 𝐼𝑠 = 𝑅) ∧ 𝑝 = (𝑖 mPwSer 𝑠)) ∧ 𝑑 = 𝐷) → (𝑤(𝑟 <bag 𝑖)𝑧𝑤(𝑟 <bag 𝐼)𝑧))
4443imbi1d 330 . . . . . . . . . . . . . . . 16 ((((𝑖 = 𝐼𝑠 = 𝑅) ∧ 𝑝 = (𝑖 mPwSer 𝑠)) ∧ 𝑑 = 𝐷) → ((𝑤(𝑟 <bag 𝑖)𝑧 → (𝑥𝑤) = (𝑦𝑤)) ↔ (𝑤(𝑟 <bag 𝐼)𝑧 → (𝑥𝑤) = (𝑦𝑤))))
4535, 44raleqbidv 3283 . . . . . . . . . . . . . . 15 ((((𝑖 = 𝐼𝑠 = 𝑅) ∧ 𝑝 = (𝑖 mPwSer 𝑠)) ∧ 𝑑 = 𝐷) → (∀𝑤𝑑 (𝑤(𝑟 <bag 𝑖)𝑧 → (𝑥𝑤) = (𝑦𝑤)) ↔ ∀𝑤𝐷 (𝑤(𝑟 <bag 𝐼)𝑧 → (𝑥𝑤) = (𝑦𝑤))))
4640, 45anbi12d 749 . . . . . . . . . . . . . 14 ((((𝑖 = 𝐼𝑠 = 𝑅) ∧ 𝑝 = (𝑖 mPwSer 𝑠)) ∧ 𝑑 = 𝐷) → (((𝑥𝑧)(lt‘𝑠)(𝑦𝑧) ∧ ∀𝑤𝑑 (𝑤(𝑟 <bag 𝑖)𝑧 → (𝑥𝑤) = (𝑦𝑤))) ↔ ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐷 (𝑤(𝑟 <bag 𝐼)𝑧 → (𝑥𝑤) = (𝑦𝑤)))))
4735, 46rexeqbidv 3284 . . . . . . . . . . . . 13 ((((𝑖 = 𝐼𝑠 = 𝑅) ∧ 𝑝 = (𝑖 mPwSer 𝑠)) ∧ 𝑑 = 𝐷) → (∃𝑧𝑑 ((𝑥𝑧)(lt‘𝑠)(𝑦𝑧) ∧ ∀𝑤𝑑 (𝑤(𝑟 <bag 𝑖)𝑧 → (𝑥𝑤) = (𝑦𝑤))) ↔ ∃𝑧𝐷 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐷 (𝑤(𝑟 <bag 𝐼)𝑧 → (𝑥𝑤) = (𝑦𝑤)))))
4828, 34, 47sbcied2 3606 . . . . . . . . . . . 12 (((𝑖 = 𝐼𝑠 = 𝑅) ∧ 𝑝 = (𝑖 mPwSer 𝑠)) → ([{ ∈ (ℕ0𝑚 𝑖) ∣ ( “ ℕ) ∈ Fin} / 𝑑]𝑧𝑑 ((𝑥𝑧)(lt‘𝑠)(𝑦𝑧) ∧ ∀𝑤𝑑 (𝑤(𝑟 <bag 𝑖)𝑧 → (𝑥𝑤) = (𝑦𝑤))) ↔ ∃𝑧𝐷 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐷 (𝑤(𝑟 <bag 𝐼)𝑧 → (𝑥𝑤) = (𝑦𝑤)))))
4948orbi1d 741 . . . . . . . . . . 11 (((𝑖 = 𝐼𝑠 = 𝑅) ∧ 𝑝 = (𝑖 mPwSer 𝑠)) → (([{ ∈ (ℕ0𝑚 𝑖) ∣ ( “ ℕ) ∈ Fin} / 𝑑]𝑧𝑑 ((𝑥𝑧)(lt‘𝑠)(𝑦𝑧) ∧ ∀𝑤𝑑 (𝑤(𝑟 <bag 𝑖)𝑧 → (𝑥𝑤) = (𝑦𝑤))) ∨ 𝑥 = 𝑦) ↔ (∃𝑧𝐷 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐷 (𝑤(𝑟 <bag 𝐼)𝑧 → (𝑥𝑤) = (𝑦𝑤))) ∨ 𝑥 = 𝑦)))
5025, 49anbi12d 749 . . . . . . . . . 10 (((𝑖 = 𝐼𝑠 = 𝑅) ∧ 𝑝 = (𝑖 mPwSer 𝑠)) → (({𝑥, 𝑦} ⊆ (Base‘𝑝) ∧ ([{ ∈ (ℕ0𝑚 𝑖) ∣ ( “ ℕ) ∈ Fin} / 𝑑]𝑧𝑑 ((𝑥𝑧)(lt‘𝑠)(𝑦𝑧) ∧ ∀𝑤𝑑 (𝑤(𝑟 <bag 𝑖)𝑧 → (𝑥𝑤) = (𝑦𝑤))) ∨ 𝑥 = 𝑦)) ↔ ({𝑥, 𝑦} ⊆ 𝐵 ∧ (∃𝑧𝐷 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐷 (𝑤(𝑟 <bag 𝐼)𝑧 → (𝑥𝑤) = (𝑦𝑤))) ∨ 𝑥 = 𝑦))))
5150opabbidv 4860 . . . . . . . . 9 (((𝑖 = 𝐼𝑠 = 𝑅) ∧ 𝑝 = (𝑖 mPwSer 𝑠)) → {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ (Base‘𝑝) ∧ ([{ ∈ (ℕ0𝑚 𝑖) ∣ ( “ ℕ) ∈ Fin} / 𝑑]𝑧𝑑 ((𝑥𝑧)(lt‘𝑠)(𝑦𝑧) ∧ ∀𝑤𝑑 (𝑤(𝑟 <bag 𝑖)𝑧 → (𝑥𝑤) = (𝑦𝑤))) ∨ 𝑥 = 𝑦))} = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ (∃𝑧𝐷 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐷 (𝑤(𝑟 <bag 𝐼)𝑧 → (𝑥𝑤) = (𝑦𝑤))) ∨ 𝑥 = 𝑦))})
5251opeq2d 4552 . . . . . . . 8 (((𝑖 = 𝐼𝑠 = 𝑅) ∧ 𝑝 = (𝑖 mPwSer 𝑠)) → ⟨(le‘ndx), {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ (Base‘𝑝) ∧ ([{ ∈ (ℕ0𝑚 𝑖) ∣ ( “ ℕ) ∈ Fin} / 𝑑]𝑧𝑑 ((𝑥𝑧)(lt‘𝑠)(𝑦𝑧) ∧ ∀𝑤𝑑 (𝑤(𝑟 <bag 𝑖)𝑧 → (𝑥𝑤) = (𝑦𝑤))) ∨ 𝑥 = 𝑦))}⟩ = ⟨(le‘ndx), {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ (∃𝑧𝐷 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐷 (𝑤(𝑟 <bag 𝐼)𝑧 → (𝑥𝑤) = (𝑦𝑤))) ∨ 𝑥 = 𝑦))}⟩)
5321, 52oveq12d 6823 . . . . . . 7 (((𝑖 = 𝐼𝑠 = 𝑅) ∧ 𝑝 = (𝑖 mPwSer 𝑠)) → (𝑝 sSet ⟨(le‘ndx), {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ (Base‘𝑝) ∧ ([{ ∈ (ℕ0𝑚 𝑖) ∣ ( “ ℕ) ∈ Fin} / 𝑑]𝑧𝑑 ((𝑥𝑧)(lt‘𝑠)(𝑦𝑧) ∧ ∀𝑤𝑑 (𝑤(𝑟 <bag 𝑖)𝑧 → (𝑥𝑤) = (𝑦𝑤))) ∨ 𝑥 = 𝑦))}⟩) = (𝑆 sSet ⟨(le‘ndx), {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ (∃𝑧𝐷 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐷 (𝑤(𝑟 <bag 𝐼)𝑧 → (𝑥𝑤) = (𝑦𝑤))) ∨ 𝑥 = 𝑦))}⟩))
5416, 53csbied 3693 . . . . . 6 ((𝑖 = 𝐼𝑠 = 𝑅) → (𝑖 mPwSer 𝑠) / 𝑝(𝑝 sSet ⟨(le‘ndx), {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ (Base‘𝑝) ∧ ([{ ∈ (ℕ0𝑚 𝑖) ∣ ( “ ℕ) ∈ Fin} / 𝑑]𝑧𝑑 ((𝑥𝑧)(lt‘𝑠)(𝑦𝑧) ∧ ∀𝑤𝑑 (𝑤(𝑟 <bag 𝑖)𝑧 → (𝑥𝑤) = (𝑦𝑤))) ∨ 𝑥 = 𝑦))}⟩) = (𝑆 sSet ⟨(le‘ndx), {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ (∃𝑧𝐷 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐷 (𝑤(𝑟 <bag 𝐼)𝑧 → (𝑥𝑤) = (𝑦𝑤))) ∨ 𝑥 = 𝑦))}⟩))
5515, 54mpteq12dv 4877 . . . . 5 ((𝑖 = 𝐼𝑠 = 𝑅) → (𝑟 ∈ 𝒫 (𝑖 × 𝑖) ↦ (𝑖 mPwSer 𝑠) / 𝑝(𝑝 sSet ⟨(le‘ndx), {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ (Base‘𝑝) ∧ ([{ ∈ (ℕ0𝑚 𝑖) ∣ ( “ ℕ) ∈ Fin} / 𝑑]𝑧𝑑 ((𝑥𝑧)(lt‘𝑠)(𝑦𝑧) ∧ ∀𝑤𝑑 (𝑤(𝑟 <bag 𝑖)𝑧 → (𝑥𝑤) = (𝑦𝑤))) ∨ 𝑥 = 𝑦))}⟩)) = (𝑟 ∈ 𝒫 (𝐼 × 𝐼) ↦ (𝑆 sSet ⟨(le‘ndx), {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ (∃𝑧𝐷 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐷 (𝑤(𝑟 <bag 𝐼)𝑧 → (𝑥𝑤) = (𝑦𝑤))) ∨ 𝑥 = 𝑦))}⟩)))
56 df-opsr 19554 . . . . 5 ordPwSer = (𝑖 ∈ V, 𝑠 ∈ V ↦ (𝑟 ∈ 𝒫 (𝑖 × 𝑖) ↦ (𝑖 mPwSer 𝑠) / 𝑝(𝑝 sSet ⟨(le‘ndx), {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ (Base‘𝑝) ∧ ([{ ∈ (ℕ0𝑚 𝑖) ∣ ( “ ℕ) ∈ Fin} / 𝑑]𝑧𝑑 ((𝑥𝑧)(lt‘𝑠)(𝑦𝑧) ∧ ∀𝑤𝑑 (𝑤(𝑟 <bag 𝑖)𝑧 → (𝑥𝑤) = (𝑦𝑤))) ∨ 𝑥 = 𝑦))}⟩)))
5755, 56ovmpt2ga 6947 . . . 4 ((𝐼 ∈ V ∧ 𝑅 ∈ V ∧ (𝑟 ∈ 𝒫 (𝐼 × 𝐼) ↦ (𝑆 sSet ⟨(le‘ndx), {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ (∃𝑧𝐷 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐷 (𝑤(𝑟 <bag 𝐼)𝑧 → (𝑥𝑤) = (𝑦𝑤))) ∨ 𝑥 = 𝑦))}⟩)) ∈ V) → (𝐼 ordPwSer 𝑅) = (𝑟 ∈ 𝒫 (𝐼 × 𝐼) ↦ (𝑆 sSet ⟨(le‘ndx), {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ (∃𝑧𝐷 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐷 (𝑤(𝑟 <bag 𝐼)𝑧 → (𝑥𝑤) = (𝑦𝑤))) ∨ 𝑥 = 𝑦))}⟩)))
584, 7, 12, 57syl3anc 1473 . . 3 (𝜑 → (𝐼 ordPwSer 𝑅) = (𝑟 ∈ 𝒫 (𝐼 × 𝐼) ↦ (𝑆 sSet ⟨(le‘ndx), {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ (∃𝑧𝐷 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐷 (𝑤(𝑟 <bag 𝐼)𝑧 → (𝑥𝑤) = (𝑦𝑤))) ∨ 𝑥 = 𝑦))}⟩)))
59 simpr 479 . . . . . . . . . . . . . . . 16 ((𝜑𝑟 = 𝑇) → 𝑟 = 𝑇)
6059oveq1d 6820 . . . . . . . . . . . . . . 15 ((𝜑𝑟 = 𝑇) → (𝑟 <bag 𝐼) = (𝑇 <bag 𝐼))
61 opsrval.c . . . . . . . . . . . . . . 15 𝐶 = (𝑇 <bag 𝐼)
6260, 61syl6eqr 2804 . . . . . . . . . . . . . 14 ((𝜑𝑟 = 𝑇) → (𝑟 <bag 𝐼) = 𝐶)
6362breqd 4807 . . . . . . . . . . . . 13 ((𝜑𝑟 = 𝑇) → (𝑤(𝑟 <bag 𝐼)𝑧𝑤𝐶𝑧))
6463imbi1d 330 . . . . . . . . . . . 12 ((𝜑𝑟 = 𝑇) → ((𝑤(𝑟 <bag 𝐼)𝑧 → (𝑥𝑤) = (𝑦𝑤)) ↔ (𝑤𝐶𝑧 → (𝑥𝑤) = (𝑦𝑤))))
6564ralbidv 3116 . . . . . . . . . . 11 ((𝜑𝑟 = 𝑇) → (∀𝑤𝐷 (𝑤(𝑟 <bag 𝐼)𝑧 → (𝑥𝑤) = (𝑦𝑤)) ↔ ∀𝑤𝐷 (𝑤𝐶𝑧 → (𝑥𝑤) = (𝑦𝑤))))
6665anbi2d 742 . . . . . . . . . 10 ((𝜑𝑟 = 𝑇) → (((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐷 (𝑤(𝑟 <bag 𝐼)𝑧 → (𝑥𝑤) = (𝑦𝑤))) ↔ ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐷 (𝑤𝐶𝑧 → (𝑥𝑤) = (𝑦𝑤)))))
6766rexbidv 3182 . . . . . . . . 9 ((𝜑𝑟 = 𝑇) → (∃𝑧𝐷 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐷 (𝑤(𝑟 <bag 𝐼)𝑧 → (𝑥𝑤) = (𝑦𝑤))) ↔ ∃𝑧𝐷 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐷 (𝑤𝐶𝑧 → (𝑥𝑤) = (𝑦𝑤)))))
6867orbi1d 741 . . . . . . . 8 ((𝜑𝑟 = 𝑇) → ((∃𝑧𝐷 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐷 (𝑤(𝑟 <bag 𝐼)𝑧 → (𝑥𝑤) = (𝑦𝑤))) ∨ 𝑥 = 𝑦) ↔ (∃𝑧𝐷 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐷 (𝑤𝐶𝑧 → (𝑥𝑤) = (𝑦𝑤))) ∨ 𝑥 = 𝑦)))
6968anbi2d 742 . . . . . . 7 ((𝜑𝑟 = 𝑇) → (({𝑥, 𝑦} ⊆ 𝐵 ∧ (∃𝑧𝐷 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐷 (𝑤(𝑟 <bag 𝐼)𝑧 → (𝑥𝑤) = (𝑦𝑤))) ∨ 𝑥 = 𝑦)) ↔ ({𝑥, 𝑦} ⊆ 𝐵 ∧ (∃𝑧𝐷 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐷 (𝑤𝐶𝑧 → (𝑥𝑤) = (𝑦𝑤))) ∨ 𝑥 = 𝑦))))
7069opabbidv 4860 . . . . . 6 ((𝜑𝑟 = 𝑇) → {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ (∃𝑧𝐷 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐷 (𝑤(𝑟 <bag 𝐼)𝑧 → (𝑥𝑤) = (𝑦𝑤))) ∨ 𝑥 = 𝑦))} = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ (∃𝑧𝐷 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐷 (𝑤𝐶𝑧 → (𝑥𝑤) = (𝑦𝑤))) ∨ 𝑥 = 𝑦))})
71 opsrval.l . . . . . 6 = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ (∃𝑧𝐷 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐷 (𝑤𝐶𝑧 → (𝑥𝑤) = (𝑦𝑤))) ∨ 𝑥 = 𝑦))}
7270, 71syl6eqr 2804 . . . . 5 ((𝜑𝑟 = 𝑇) → {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ (∃𝑧𝐷 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐷 (𝑤(𝑟 <bag 𝐼)𝑧 → (𝑥𝑤) = (𝑦𝑤))) ∨ 𝑥 = 𝑦))} = )
7372opeq2d 4552 . . . 4 ((𝜑𝑟 = 𝑇) → ⟨(le‘ndx), {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ (∃𝑧𝐷 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐷 (𝑤(𝑟 <bag 𝐼)𝑧 → (𝑥𝑤) = (𝑦𝑤))) ∨ 𝑥 = 𝑦))}⟩ = ⟨(le‘ndx), ⟩)
7473oveq2d 6821 . . 3 ((𝜑𝑟 = 𝑇) → (𝑆 sSet ⟨(le‘ndx), {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ (∃𝑧𝐷 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐷 (𝑤(𝑟 <bag 𝐼)𝑧 → (𝑥𝑤) = (𝑦𝑤))) ∨ 𝑥 = 𝑦))}⟩) = (𝑆 sSet ⟨(le‘ndx), ⟩))
75 opsrval.t . . . 4 (𝜑𝑇 ⊆ (𝐼 × 𝐼))
76 elpw2g 4968 . . . . 5 ((𝐼 × 𝐼) ∈ V → (𝑇 ∈ 𝒫 (𝐼 × 𝐼) ↔ 𝑇 ⊆ (𝐼 × 𝐼)))
779, 76syl 17 . . . 4 (𝜑 → (𝑇 ∈ 𝒫 (𝐼 × 𝐼) ↔ 𝑇 ⊆ (𝐼 × 𝐼)))
7875, 77mpbird 247 . . 3 (𝜑𝑇 ∈ 𝒫 (𝐼 × 𝐼))
79 ovexd 6835 . . 3 (𝜑 → (𝑆 sSet ⟨(le‘ndx), ⟩) ∈ V)
8058, 74, 78, 79fvmptd 6442 . 2 (𝜑 → ((𝐼 ordPwSer 𝑅)‘𝑇) = (𝑆 sSet ⟨(le‘ndx), ⟩))
811, 80syl5eq 2798 1 (𝜑𝑂 = (𝑆 sSet ⟨(le‘ndx), ⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 382  wa 383   = wceq 1624  wcel 2131  wral 3042  wrex 3043  {crab 3046  Vcvv 3332  [wsbc 3568  csb 3666  wss 3707  𝒫 cpw 4294  {cpr 4315  cop 4319   class class class wbr 4796  {copab 4856  cmpt 4873   × cxp 5256  ccnv 5257  cima 5261  cfv 6041  (class class class)co 6805  𝑚 cmap 8015  Fincfn 8113  cn 11204  0cn0 11476  ndxcnx 16048   sSet csts 16049  Basecbs 16051  lecple 16142  ltcplt 17134   mPwSer cmps 19545   <bag cltb 19548   ordPwSer copws 19549
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1863  ax-4 1878  ax-5 1980  ax-6 2046  ax-7 2082  ax-8 2133  ax-9 2140  ax-10 2160  ax-11 2175  ax-12 2188  ax-13 2383  ax-ext 2732  ax-rep 4915  ax-sep 4925  ax-nul 4933  ax-pow 4984  ax-pr 5047  ax-un 7106
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1627  df-ex 1846  df-nf 1851  df-sb 2039  df-eu 2603  df-mo 2604  df-clab 2739  df-cleq 2745  df-clel 2748  df-nfc 2883  df-ne 2925  df-ral 3047  df-rex 3048  df-reu 3049  df-rab 3051  df-v 3334  df-sbc 3569  df-csb 3667  df-dif 3710  df-un 3712  df-in 3714  df-ss 3721  df-nul 4051  df-if 4223  df-pw 4296  df-sn 4314  df-pr 4316  df-op 4320  df-uni 4581  df-iun 4666  df-br 4797  df-opab 4857  df-mpt 4874  df-id 5166  df-xp 5264  df-rel 5265  df-cnv 5266  df-co 5267  df-dm 5268  df-rn 5269  df-res 5270  df-ima 5271  df-iota 6004  df-fun 6043  df-fn 6044  df-f 6045  df-f1 6046  df-fo 6047  df-f1o 6048  df-fv 6049  df-ov 6808  df-oprab 6809  df-mpt2 6810  df-opsr 19554
This theorem is referenced by:  opsrle  19669  opsrval2  19670
  Copyright terms: Public domain W3C validator