MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opsrtoslem1 Structured version   Visualization version   GIF version

Theorem opsrtoslem1 19532
Description: Lemma for opsrtos 19534. (Contributed by Mario Carneiro, 8-Feb-2015.)
Hypotheses
Ref Expression
opsrso.o 𝑂 = ((𝐼 ordPwSer 𝑅)‘𝑇)
opsrso.i (𝜑𝐼𝑉)
opsrso.r (𝜑𝑅 ∈ Toset)
opsrso.t (𝜑𝑇 ⊆ (𝐼 × 𝐼))
opsrso.w (𝜑𝑇 We 𝐼)
opsrtoslem.s 𝑆 = (𝐼 mPwSer 𝑅)
opsrtoslem.b 𝐵 = (Base‘𝑆)
opsrtoslem.q < = (lt‘𝑅)
opsrtoslem.c 𝐶 = (𝑇 <bag 𝐼)
opsrtoslem.d 𝐷 = { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin}
opsrtoslem.ps (𝜓 ↔ ∃𝑧𝐷 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐷 (𝑤𝐶𝑧 → (𝑥𝑤) = (𝑦𝑤))))
opsrtoslem.l = (le‘𝑂)
Assertion
Ref Expression
opsrtoslem1 (𝜑 = (({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)) ∪ ( I ↾ 𝐵)))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝑤,𝑦,𝑧,𝐶   𝑤,,𝑥,𝑦,𝑧,𝐼   𝜑,,𝑤,𝑥,𝑦,𝑧   𝑤,𝐷,𝑥,𝑦,𝑧   𝑤, < ,𝑥,𝑦,𝑧   𝑤,𝑅,𝑥,𝑦,𝑧   𝑤,𝑇,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜓(𝑥,𝑦,𝑧,𝑤,)   𝐵(𝑧,𝑤,)   𝐶()   𝐷()   𝑅()   𝑆(𝑥,𝑦,𝑧,𝑤,)   < ()   𝑇()   (𝑥,𝑦,𝑧,𝑤,)   𝑂(𝑥,𝑦,𝑧,𝑤,)   𝑉(𝑥,𝑦,𝑧,𝑤,)

Proof of Theorem opsrtoslem1
StepHypRef Expression
1 opsrtoslem.s . . 3 𝑆 = (𝐼 mPwSer 𝑅)
2 opsrso.o . . 3 𝑂 = ((𝐼 ordPwSer 𝑅)‘𝑇)
3 opsrtoslem.b . . 3 𝐵 = (Base‘𝑆)
4 opsrtoslem.q . . 3 < = (lt‘𝑅)
5 opsrtoslem.c . . 3 𝐶 = (𝑇 <bag 𝐼)
6 opsrtoslem.d . . 3 𝐷 = { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin}
7 opsrtoslem.l . . 3 = (le‘𝑂)
8 opsrso.t . . 3 (𝜑𝑇 ⊆ (𝐼 × 𝐼))
91, 2, 3, 4, 5, 6, 7, 8opsrle 19523 . 2 (𝜑 = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ (∃𝑧𝐷 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐷 (𝑤𝐶𝑧 → (𝑥𝑤) = (𝑦𝑤))) ∨ 𝑥 = 𝑦))})
10 unopab 4761 . . 3 ({⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐵𝜓)} ∪ {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐵𝑥 = 𝑦)}) = {⟨𝑥, 𝑦⟩ ∣ (({𝑥, 𝑦} ⊆ 𝐵𝜓) ∨ ({𝑥, 𝑦} ⊆ 𝐵𝑥 = 𝑦))}
11 inopab 5285 . . . . 5 ({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵𝑦𝐵)}) = {⟨𝑥, 𝑦⟩ ∣ (𝜓 ∧ (𝑥𝐵𝑦𝐵))}
12 df-xp 5149 . . . . . 6 (𝐵 × 𝐵) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵𝑦𝐵)}
1312ineq2i 3844 . . . . 5 ({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)) = ({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵𝑦𝐵)})
14 vex 3234 . . . . . . . . 9 𝑥 ∈ V
15 vex 3234 . . . . . . . . 9 𝑦 ∈ V
1614, 15prss 4383 . . . . . . . 8 ((𝑥𝐵𝑦𝐵) ↔ {𝑥, 𝑦} ⊆ 𝐵)
1716anbi1i 731 . . . . . . 7 (((𝑥𝐵𝑦𝐵) ∧ 𝜓) ↔ ({𝑥, 𝑦} ⊆ 𝐵𝜓))
18 ancom 465 . . . . . . 7 (((𝑥𝐵𝑦𝐵) ∧ 𝜓) ↔ (𝜓 ∧ (𝑥𝐵𝑦𝐵)))
1917, 18bitr3i 266 . . . . . 6 (({𝑥, 𝑦} ⊆ 𝐵𝜓) ↔ (𝜓 ∧ (𝑥𝐵𝑦𝐵)))
2019opabbii 4750 . . . . 5 {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐵𝜓)} = {⟨𝑥, 𝑦⟩ ∣ (𝜓 ∧ (𝑥𝐵𝑦𝐵))}
2111, 13, 203eqtr4i 2683 . . . 4 ({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)) = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐵𝜓)}
22 opabresid 5490 . . . . 5 {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵𝑦 = 𝑥)} = ( I ↾ 𝐵)
23 equcom 1991 . . . . . . . . 9 (𝑥 = 𝑦𝑦 = 𝑥)
2423anbi2i 730 . . . . . . . 8 ((𝑥𝐵𝑥 = 𝑦) ↔ (𝑥𝐵𝑦 = 𝑥))
25 eleq1 2718 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝑥𝐵𝑦𝐵))
2625biimpac 502 . . . . . . . . 9 ((𝑥𝐵𝑥 = 𝑦) → 𝑦𝐵)
2726pm4.71i 665 . . . . . . . 8 ((𝑥𝐵𝑥 = 𝑦) ↔ ((𝑥𝐵𝑥 = 𝑦) ∧ 𝑦𝐵))
2824, 27bitr3i 266 . . . . . . 7 ((𝑥𝐵𝑦 = 𝑥) ↔ ((𝑥𝐵𝑥 = 𝑦) ∧ 𝑦𝐵))
29 an32 856 . . . . . . 7 (((𝑥𝐵𝑥 = 𝑦) ∧ 𝑦𝐵) ↔ ((𝑥𝐵𝑦𝐵) ∧ 𝑥 = 𝑦))
3016anbi1i 731 . . . . . . 7 (((𝑥𝐵𝑦𝐵) ∧ 𝑥 = 𝑦) ↔ ({𝑥, 𝑦} ⊆ 𝐵𝑥 = 𝑦))
3128, 29, 303bitri 286 . . . . . 6 ((𝑥𝐵𝑦 = 𝑥) ↔ ({𝑥, 𝑦} ⊆ 𝐵𝑥 = 𝑦))
3231opabbii 4750 . . . . 5 {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵𝑦 = 𝑥)} = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐵𝑥 = 𝑦)}
3322, 32eqtr3i 2675 . . . 4 ( I ↾ 𝐵) = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐵𝑥 = 𝑦)}
3421, 33uneq12i 3798 . . 3 (({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)) ∪ ( I ↾ 𝐵)) = ({⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐵𝜓)} ∪ {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐵𝑥 = 𝑦)})
35 opsrtoslem.ps . . . . . . 7 (𝜓 ↔ ∃𝑧𝐷 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐷 (𝑤𝐶𝑧 → (𝑥𝑤) = (𝑦𝑤))))
3635orbi1i 541 . . . . . 6 ((𝜓𝑥 = 𝑦) ↔ (∃𝑧𝐷 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐷 (𝑤𝐶𝑧 → (𝑥𝑤) = (𝑦𝑤))) ∨ 𝑥 = 𝑦))
3736anbi2i 730 . . . . 5 (({𝑥, 𝑦} ⊆ 𝐵 ∧ (𝜓𝑥 = 𝑦)) ↔ ({𝑥, 𝑦} ⊆ 𝐵 ∧ (∃𝑧𝐷 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐷 (𝑤𝐶𝑧 → (𝑥𝑤) = (𝑦𝑤))) ∨ 𝑥 = 𝑦)))
38 andi 929 . . . . 5 (({𝑥, 𝑦} ⊆ 𝐵 ∧ (𝜓𝑥 = 𝑦)) ↔ (({𝑥, 𝑦} ⊆ 𝐵𝜓) ∨ ({𝑥, 𝑦} ⊆ 𝐵𝑥 = 𝑦)))
3937, 38bitr3i 266 . . . 4 (({𝑥, 𝑦} ⊆ 𝐵 ∧ (∃𝑧𝐷 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐷 (𝑤𝐶𝑧 → (𝑥𝑤) = (𝑦𝑤))) ∨ 𝑥 = 𝑦)) ↔ (({𝑥, 𝑦} ⊆ 𝐵𝜓) ∨ ({𝑥, 𝑦} ⊆ 𝐵𝑥 = 𝑦)))
4039opabbii 4750 . . 3 {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ (∃𝑧𝐷 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐷 (𝑤𝐶𝑧 → (𝑥𝑤) = (𝑦𝑤))) ∨ 𝑥 = 𝑦))} = {⟨𝑥, 𝑦⟩ ∣ (({𝑥, 𝑦} ⊆ 𝐵𝜓) ∨ ({𝑥, 𝑦} ⊆ 𝐵𝑥 = 𝑦))}
4110, 34, 403eqtr4ri 2684 . 2 {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ (∃𝑧𝐷 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐷 (𝑤𝐶𝑧 → (𝑥𝑤) = (𝑦𝑤))) ∨ 𝑥 = 𝑦))} = (({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)) ∪ ( I ↾ 𝐵))
429, 41syl6eq 2701 1 (𝜑 = (({⟨𝑥, 𝑦⟩ ∣ 𝜓} ∩ (𝐵 × 𝐵)) ∪ ( I ↾ 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 382  wa 383   = wceq 1523  wcel 2030  wral 2941  wrex 2942  {crab 2945  cun 3605  cin 3606  wss 3607  {cpr 4212   class class class wbr 4685  {copab 4745   I cid 5052   We wwe 5101   × cxp 5141  ccnv 5142  cres 5145  cima 5146  cfv 5926  (class class class)co 6690  𝑚 cmap 7899  Fincfn 7997  cn 11058  0cn0 11330  Basecbs 15904  lecple 15995  ltcplt 16988  Tosetctos 17080   mPwSer cmps 19399   <bag cltb 19402   ordPwSer copws 19403
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-pnf 10114  df-mnf 10115  df-ltxr 10117  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-9 11124  df-dec 11532  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-ple 16008  df-psr 19404  df-opsr 19408
This theorem is referenced by:  opsrtoslem2  19533
  Copyright terms: Public domain W3C validator