![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > oprssdm | Structured version Visualization version GIF version |
Description: Domain of closure of an operation. (Contributed by NM, 24-Aug-1995.) |
Ref | Expression |
---|---|
oprssdm.1 | ⊢ ¬ ∅ ∈ 𝑆 |
oprssdm.2 | ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → (𝑥𝐹𝑦) ∈ 𝑆) |
Ref | Expression |
---|---|
oprssdm | ⊢ (𝑆 × 𝑆) ⊆ dom 𝐹 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relxp 5160 | . 2 ⊢ Rel (𝑆 × 𝑆) | |
2 | opelxp 5180 | . . 3 ⊢ (〈𝑥, 𝑦〉 ∈ (𝑆 × 𝑆) ↔ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) | |
3 | df-ov 6693 | . . . . 5 ⊢ (𝑥𝐹𝑦) = (𝐹‘〈𝑥, 𝑦〉) | |
4 | oprssdm.2 | . . . . 5 ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → (𝑥𝐹𝑦) ∈ 𝑆) | |
5 | 3, 4 | syl5eqelr 2735 | . . . 4 ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → (𝐹‘〈𝑥, 𝑦〉) ∈ 𝑆) |
6 | oprssdm.1 | . . . . . 6 ⊢ ¬ ∅ ∈ 𝑆 | |
7 | ndmfv 6256 | . . . . . . 7 ⊢ (¬ 〈𝑥, 𝑦〉 ∈ dom 𝐹 → (𝐹‘〈𝑥, 𝑦〉) = ∅) | |
8 | 7 | eleq1d 2715 | . . . . . 6 ⊢ (¬ 〈𝑥, 𝑦〉 ∈ dom 𝐹 → ((𝐹‘〈𝑥, 𝑦〉) ∈ 𝑆 ↔ ∅ ∈ 𝑆)) |
9 | 6, 8 | mtbiri 316 | . . . . 5 ⊢ (¬ 〈𝑥, 𝑦〉 ∈ dom 𝐹 → ¬ (𝐹‘〈𝑥, 𝑦〉) ∈ 𝑆) |
10 | 9 | con4i 113 | . . . 4 ⊢ ((𝐹‘〈𝑥, 𝑦〉) ∈ 𝑆 → 〈𝑥, 𝑦〉 ∈ dom 𝐹) |
11 | 5, 10 | syl 17 | . . 3 ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → 〈𝑥, 𝑦〉 ∈ dom 𝐹) |
12 | 2, 11 | sylbi 207 | . 2 ⊢ (〈𝑥, 𝑦〉 ∈ (𝑆 × 𝑆) → 〈𝑥, 𝑦〉 ∈ dom 𝐹) |
13 | 1, 12 | relssi 5245 | 1 ⊢ (𝑆 × 𝑆) ⊆ dom 𝐹 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 383 ∈ wcel 2030 ⊆ wss 3607 ∅c0 3948 〈cop 4216 × cxp 5141 dom cdm 5143 ‘cfv 5926 (class class class)co 6690 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-br 4686 df-opab 4746 df-xp 5149 df-rel 5150 df-dm 5153 df-iota 5889 df-fv 5934 df-ov 6693 |
This theorem is referenced by: dmaddsr 9944 dmmulsr 9945 axaddf 10004 axmulf 10005 |
Copyright terms: Public domain | W3C validator |