MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oprpiece1res1 Structured version   Visualization version   GIF version

Theorem oprpiece1res1 22971
Description: Restriction to the first part of a piecewise defined function. (Contributed by Jeff Madsen, 11-Jun-2010.) (Proof shortened by Mario Carneiro, 3-Sep-2015.)
Hypotheses
Ref Expression
oprpiece1.1 𝐴 ∈ ℝ
oprpiece1.2 𝐵 ∈ ℝ
oprpiece1.3 𝐴𝐵
oprpiece1.4 𝑅 ∈ V
oprpiece1.5 𝑆 ∈ V
oprpiece1.6 𝐾 ∈ (𝐴[,]𝐵)
oprpiece1.7 𝐹 = (𝑥 ∈ (𝐴[,]𝐵), 𝑦𝐶 ↦ if(𝑥𝐾, 𝑅, 𝑆))
oprpiece1.8 𝐺 = (𝑥 ∈ (𝐴[,]𝐾), 𝑦𝐶𝑅)
Assertion
Ref Expression
oprpiece1res1 (𝐹 ↾ ((𝐴[,]𝐾) × 𝐶)) = 𝐺
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝑥,𝐾,𝑦
Allowed substitution hints:   𝑅(𝑥,𝑦)   𝑆(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝐺(𝑥,𝑦)

Proof of Theorem oprpiece1res1
StepHypRef Expression
1 oprpiece1.1 . . . . . 6 𝐴 ∈ ℝ
21rexri 10309 . . . . 5 𝐴 ∈ ℝ*
3 oprpiece1.2 . . . . . 6 𝐵 ∈ ℝ
43rexri 10309 . . . . 5 𝐵 ∈ ℝ*
5 oprpiece1.3 . . . . 5 𝐴𝐵
6 lbicc2 12501 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐴 ∈ (𝐴[,]𝐵))
72, 4, 5, 6mp3an 1573 . . . 4 𝐴 ∈ (𝐴[,]𝐵)
8 oprpiece1.6 . . . 4 𝐾 ∈ (𝐴[,]𝐵)
9 iccss2 12457 . . . 4 ((𝐴 ∈ (𝐴[,]𝐵) ∧ 𝐾 ∈ (𝐴[,]𝐵)) → (𝐴[,]𝐾) ⊆ (𝐴[,]𝐵))
107, 8, 9mp2an 710 . . 3 (𝐴[,]𝐾) ⊆ (𝐴[,]𝐵)
11 ssid 3765 . . 3 𝐶𝐶
12 resmpt2 6924 . . 3 (((𝐴[,]𝐾) ⊆ (𝐴[,]𝐵) ∧ 𝐶𝐶) → ((𝑥 ∈ (𝐴[,]𝐵), 𝑦𝐶 ↦ if(𝑥𝐾, 𝑅, 𝑆)) ↾ ((𝐴[,]𝐾) × 𝐶)) = (𝑥 ∈ (𝐴[,]𝐾), 𝑦𝐶 ↦ if(𝑥𝐾, 𝑅, 𝑆)))
1310, 11, 12mp2an 710 . 2 ((𝑥 ∈ (𝐴[,]𝐵), 𝑦𝐶 ↦ if(𝑥𝐾, 𝑅, 𝑆)) ↾ ((𝐴[,]𝐾) × 𝐶)) = (𝑥 ∈ (𝐴[,]𝐾), 𝑦𝐶 ↦ if(𝑥𝐾, 𝑅, 𝑆))
14 oprpiece1.7 . . 3 𝐹 = (𝑥 ∈ (𝐴[,]𝐵), 𝑦𝐶 ↦ if(𝑥𝐾, 𝑅, 𝑆))
1514reseq1i 5547 . 2 (𝐹 ↾ ((𝐴[,]𝐾) × 𝐶)) = ((𝑥 ∈ (𝐴[,]𝐵), 𝑦𝐶 ↦ if(𝑥𝐾, 𝑅, 𝑆)) ↾ ((𝐴[,]𝐾) × 𝐶))
16 oprpiece1.8 . . 3 𝐺 = (𝑥 ∈ (𝐴[,]𝐾), 𝑦𝐶𝑅)
17 elicc1 12432 . . . . . . . . . 10 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐾 ∈ (𝐴[,]𝐵) ↔ (𝐾 ∈ ℝ*𝐴𝐾𝐾𝐵)))
182, 4, 17mp2an 710 . . . . . . . . 9 (𝐾 ∈ (𝐴[,]𝐵) ↔ (𝐾 ∈ ℝ*𝐴𝐾𝐾𝐵))
1918simp1bi 1140 . . . . . . . 8 (𝐾 ∈ (𝐴[,]𝐵) → 𝐾 ∈ ℝ*)
208, 19ax-mp 5 . . . . . . 7 𝐾 ∈ ℝ*
21 iccleub 12442 . . . . . . 7 ((𝐴 ∈ ℝ*𝐾 ∈ ℝ*𝑥 ∈ (𝐴[,]𝐾)) → 𝑥𝐾)
222, 20, 21mp3an12 1563 . . . . . 6 (𝑥 ∈ (𝐴[,]𝐾) → 𝑥𝐾)
2322iftrued 4238 . . . . 5 (𝑥 ∈ (𝐴[,]𝐾) → if(𝑥𝐾, 𝑅, 𝑆) = 𝑅)
2423adantr 472 . . . 4 ((𝑥 ∈ (𝐴[,]𝐾) ∧ 𝑦𝐶) → if(𝑥𝐾, 𝑅, 𝑆) = 𝑅)
2524mpt2eq3ia 6886 . . 3 (𝑥 ∈ (𝐴[,]𝐾), 𝑦𝐶 ↦ if(𝑥𝐾, 𝑅, 𝑆)) = (𝑥 ∈ (𝐴[,]𝐾), 𝑦𝐶𝑅)
2616, 25eqtr4i 2785 . 2 𝐺 = (𝑥 ∈ (𝐴[,]𝐾), 𝑦𝐶 ↦ if(𝑥𝐾, 𝑅, 𝑆))
2713, 15, 263eqtr4i 2792 1 (𝐹 ↾ ((𝐴[,]𝐾) × 𝐶)) = 𝐺
Colors of variables: wff setvar class
Syntax hints:  wb 196  w3a 1072   = wceq 1632  wcel 2139  Vcvv 3340  wss 3715  ifcif 4230   class class class wbr 4804   × cxp 5264  cres 5268  (class class class)co 6814  cmpt2 6816  cr 10147  *cxr 10285  cle 10287  [,]cicc 12391
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-cnex 10204  ax-resscn 10205  ax-pre-lttri 10222  ax-pre-lttrn 10223
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-po 5187  df-so 5188  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-1st 7334  df-2nd 7335  df-er 7913  df-en 8124  df-dom 8125  df-sdom 8126  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-icc 12395
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator