MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oprabexd Structured version   Visualization version   GIF version

Theorem oprabexd 7197
Description: Existence of an operator abstraction. (Contributed by Jeff Madsen, 2-Sep-2009.)
Hypotheses
Ref Expression
oprabexd.1 (𝜑𝐴 ∈ V)
oprabexd.2 (𝜑𝐵 ∈ V)
oprabexd.3 ((𝜑 ∧ (𝑥𝐴𝑦𝐵)) → ∃*𝑧𝜓)
oprabexd.4 (𝜑𝐹 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜓)})
Assertion
Ref Expression
oprabexd (𝜑𝐹 ∈ V)
Distinct variable groups:   𝑥,𝐴,𝑦,𝑧   𝑥,𝐵,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜓(𝑥,𝑦,𝑧)   𝐹(𝑥,𝑦,𝑧)

Proof of Theorem oprabexd
StepHypRef Expression
1 oprabexd.4 . 2 (𝜑𝐹 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜓)})
2 oprabexd.3 . . . . . . 7 ((𝜑 ∧ (𝑥𝐴𝑦𝐵)) → ∃*𝑧𝜓)
32ex 449 . . . . . 6 (𝜑 → ((𝑥𝐴𝑦𝐵) → ∃*𝑧𝜓))
4 moanimv 2560 . . . . . 6 (∃*𝑧((𝑥𝐴𝑦𝐵) ∧ 𝜓) ↔ ((𝑥𝐴𝑦𝐵) → ∃*𝑧𝜓))
53, 4sylibr 224 . . . . 5 (𝜑 → ∃*𝑧((𝑥𝐴𝑦𝐵) ∧ 𝜓))
65alrimivv 1896 . . . 4 (𝜑 → ∀𝑥𝑦∃*𝑧((𝑥𝐴𝑦𝐵) ∧ 𝜓))
7 funoprabg 6801 . . . 4 (∀𝑥𝑦∃*𝑧((𝑥𝐴𝑦𝐵) ∧ 𝜓) → Fun {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜓)})
86, 7syl 17 . . 3 (𝜑 → Fun {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜓)})
9 dmoprabss 6784 . . . 4 dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜓)} ⊆ (𝐴 × 𝐵)
10 oprabexd.1 . . . . 5 (𝜑𝐴 ∈ V)
11 oprabexd.2 . . . . 5 (𝜑𝐵 ∈ V)
12 xpexg 7002 . . . . 5 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 × 𝐵) ∈ V)
1310, 11, 12syl2anc 694 . . . 4 (𝜑 → (𝐴 × 𝐵) ∈ V)
14 ssexg 4837 . . . 4 ((dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜓)} ⊆ (𝐴 × 𝐵) ∧ (𝐴 × 𝐵) ∈ V) → dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜓)} ∈ V)
159, 13, 14sylancr 696 . . 3 (𝜑 → dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜓)} ∈ V)
16 funex 6523 . . 3 ((Fun {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜓)} ∧ dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜓)} ∈ V) → {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜓)} ∈ V)
178, 15, 16syl2anc 694 . 2 (𝜑 → {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜓)} ∈ V)
181, 17eqeltrd 2730 1 (𝜑𝐹 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  wal 1521   = wceq 1523  wcel 2030  ∃*wmo 2499  Vcvv 3231  wss 3607   × cxp 5141  dom cdm 5143  Fun wfun 5920  {coprab 6691
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-oprab 6694
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator