MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oprabex Structured version   Visualization version   GIF version

Theorem oprabex 7198
Description: Existence of an operation class abstraction. (Contributed by NM, 19-Oct-2004.)
Hypotheses
Ref Expression
oprabex.1 𝐴 ∈ V
oprabex.2 𝐵 ∈ V
oprabex.3 ((𝑥𝐴𝑦𝐵) → ∃*𝑧𝜑)
oprabex.4 𝐹 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜑)}
Assertion
Ref Expression
oprabex 𝐹 ∈ V
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝐹(𝑥,𝑦,𝑧)

Proof of Theorem oprabex
StepHypRef Expression
1 oprabex.4 . 2 𝐹 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜑)}
2 oprabex.3 . . . . 5 ((𝑥𝐴𝑦𝐵) → ∃*𝑧𝜑)
3 moanimv 2560 . . . . 5 (∃*𝑧((𝑥𝐴𝑦𝐵) ∧ 𝜑) ↔ ((𝑥𝐴𝑦𝐵) → ∃*𝑧𝜑))
42, 3mpbir 221 . . . 4 ∃*𝑧((𝑥𝐴𝑦𝐵) ∧ 𝜑)
54funoprab 6802 . . 3 Fun {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜑)}
6 oprabex.1 . . . . 5 𝐴 ∈ V
7 oprabex.2 . . . . 5 𝐵 ∈ V
86, 7xpex 7004 . . . 4 (𝐴 × 𝐵) ∈ V
9 dmoprabss 6784 . . . 4 dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜑)} ⊆ (𝐴 × 𝐵)
108, 9ssexi 4836 . . 3 dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜑)} ∈ V
11 funex 6523 . . 3 ((Fun {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜑)} ∧ dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜑)} ∈ V) → {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜑)} ∈ V)
125, 10, 11mp2an 708 . 2 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜑)} ∈ V
131, 12eqeltri 2726 1 𝐹 ∈ V
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1523  wcel 2030  ∃*wmo 2499  Vcvv 3231   × cxp 5141  dom cdm 5143  Fun wfun 5920  {coprab 6691
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-oprab 6694
This theorem is referenced by:  oprabex3  7199  joinfval  17048  meetfval  17062
  Copyright terms: Public domain W3C validator