Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  opprunit Structured version   Visualization version   GIF version

Theorem opprunit 18869
 Description: Being a unit is a symmetric property, so it transfers to the opposite ring. (Contributed by Mario Carneiro, 4-Dec-2014.)
Hypotheses
Ref Expression
opprunit.1 𝑈 = (Unit‘𝑅)
opprunit.2 𝑆 = (oppr𝑅)
Assertion
Ref Expression
opprunit 𝑈 = (Unit‘𝑆)

Proof of Theorem opprunit
Dummy variables 𝑦 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opprunit.2 . . . . . . . . . . 11 𝑆 = (oppr𝑅)
2 eqid 2771 . . . . . . . . . . 11 (Base‘𝑅) = (Base‘𝑅)
31, 2opprbas 18837 . . . . . . . . . 10 (Base‘𝑅) = (Base‘𝑆)
4 eqid 2771 . . . . . . . . . 10 (.r𝑆) = (.r𝑆)
5 eqid 2771 . . . . . . . . . 10 (oppr𝑆) = (oppr𝑆)
6 eqid 2771 . . . . . . . . . 10 (.r‘(oppr𝑆)) = (.r‘(oppr𝑆))
73, 4, 5, 6opprmul 18834 . . . . . . . . 9 (𝑦(.r‘(oppr𝑆))𝑥) = (𝑥(.r𝑆)𝑦)
8 eqid 2771 . . . . . . . . . 10 (.r𝑅) = (.r𝑅)
92, 8, 1, 4opprmul 18834 . . . . . . . . 9 (𝑥(.r𝑆)𝑦) = (𝑦(.r𝑅)𝑥)
107, 9eqtr2i 2794 . . . . . . . 8 (𝑦(.r𝑅)𝑥) = (𝑦(.r‘(oppr𝑆))𝑥)
1110eqeq1i 2776 . . . . . . 7 ((𝑦(.r𝑅)𝑥) = (1r𝑅) ↔ (𝑦(.r‘(oppr𝑆))𝑥) = (1r𝑅))
1211rexbii 3189 . . . . . 6 (∃𝑦 ∈ (Base‘𝑅)(𝑦(.r𝑅)𝑥) = (1r𝑅) ↔ ∃𝑦 ∈ (Base‘𝑅)(𝑦(.r‘(oppr𝑆))𝑥) = (1r𝑅))
1312anbi2i 609 . . . . 5 ((𝑥 ∈ (Base‘𝑅) ∧ ∃𝑦 ∈ (Base‘𝑅)(𝑦(.r𝑅)𝑥) = (1r𝑅)) ↔ (𝑥 ∈ (Base‘𝑅) ∧ ∃𝑦 ∈ (Base‘𝑅)(𝑦(.r‘(oppr𝑆))𝑥) = (1r𝑅)))
14 eqid 2771 . . . . . 6 (∥r𝑅) = (∥r𝑅)
152, 14, 8dvdsr 18854 . . . . 5 (𝑥(∥r𝑅)(1r𝑅) ↔ (𝑥 ∈ (Base‘𝑅) ∧ ∃𝑦 ∈ (Base‘𝑅)(𝑦(.r𝑅)𝑥) = (1r𝑅)))
165, 3opprbas 18837 . . . . . 6 (Base‘𝑅) = (Base‘(oppr𝑆))
17 eqid 2771 . . . . . 6 (∥r‘(oppr𝑆)) = (∥r‘(oppr𝑆))
1816, 17, 6dvdsr 18854 . . . . 5 (𝑥(∥r‘(oppr𝑆))(1r𝑅) ↔ (𝑥 ∈ (Base‘𝑅) ∧ ∃𝑦 ∈ (Base‘𝑅)(𝑦(.r‘(oppr𝑆))𝑥) = (1r𝑅)))
1913, 15, 183bitr4i 292 . . . 4 (𝑥(∥r𝑅)(1r𝑅) ↔ 𝑥(∥r‘(oppr𝑆))(1r𝑅))
2019anbi2ci 611 . . 3 ((𝑥(∥r𝑅)(1r𝑅) ∧ 𝑥(∥r𝑆)(1r𝑅)) ↔ (𝑥(∥r𝑆)(1r𝑅) ∧ 𝑥(∥r‘(oppr𝑆))(1r𝑅)))
21 opprunit.1 . . . 4 𝑈 = (Unit‘𝑅)
22 eqid 2771 . . . 4 (1r𝑅) = (1r𝑅)
23 eqid 2771 . . . 4 (∥r𝑆) = (∥r𝑆)
2421, 22, 14, 1, 23isunit 18865 . . 3 (𝑥𝑈 ↔ (𝑥(∥r𝑅)(1r𝑅) ∧ 𝑥(∥r𝑆)(1r𝑅)))
25 eqid 2771 . . . 4 (Unit‘𝑆) = (Unit‘𝑆)
261, 22oppr1 18842 . . . 4 (1r𝑅) = (1r𝑆)
2725, 26, 23, 5, 17isunit 18865 . . 3 (𝑥 ∈ (Unit‘𝑆) ↔ (𝑥(∥r𝑆)(1r𝑅) ∧ 𝑥(∥r‘(oppr𝑆))(1r𝑅)))
2820, 24, 273bitr4i 292 . 2 (𝑥𝑈𝑥 ∈ (Unit‘𝑆))
2928eqriv 2768 1 𝑈 = (Unit‘𝑆)
 Colors of variables: wff setvar class Syntax hints:   ∧ wa 382   = wceq 1631   ∈ wcel 2145  ∃wrex 3062   class class class wbr 4786  ‘cfv 6031  (class class class)co 6793  Basecbs 16064  .rcmulr 16150  1rcur 18709  opprcoppr 18830  ∥rcdsr 18846  Unitcui 18847 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-om 7213  df-tpos 7504  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-er 7896  df-en 8110  df-dom 8111  df-sdom 8112  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-nn 11223  df-2 11281  df-3 11282  df-ndx 16067  df-slot 16068  df-base 16070  df-sets 16071  df-plusg 16162  df-mulr 16163  df-0g 16310  df-mgp 18698  df-ur 18710  df-oppr 18831  df-dvdsr 18849  df-unit 18850 This theorem is referenced by:  opprirred  18910  irredlmul  18916  opprdrng  18981  ply1divalg2  24118
 Copyright terms: Public domain W3C validator