![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > opprsubrg | Structured version Visualization version GIF version |
Description: Being a subring is a symmetric property. (Contributed by Mario Carneiro, 6-Dec-2014.) |
Ref | Expression |
---|---|
opprsubrg.o | ⊢ 𝑂 = (oppr‘𝑅) |
Ref | Expression |
---|---|
opprsubrg | ⊢ (SubRing‘𝑅) = (SubRing‘𝑂) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subrgrcl 18987 | . . 3 ⊢ (𝑥 ∈ (SubRing‘𝑅) → 𝑅 ∈ Ring) | |
2 | subrgrcl 18987 | . . . 4 ⊢ (𝑥 ∈ (SubRing‘𝑂) → 𝑂 ∈ Ring) | |
3 | opprsubrg.o | . . . . 5 ⊢ 𝑂 = (oppr‘𝑅) | |
4 | 3 | opprringb 18832 | . . . 4 ⊢ (𝑅 ∈ Ring ↔ 𝑂 ∈ Ring) |
5 | 2, 4 | sylibr 224 | . . 3 ⊢ (𝑥 ∈ (SubRing‘𝑂) → 𝑅 ∈ Ring) |
6 | 3 | opprsubg 18836 | . . . . . . 7 ⊢ (SubGrp‘𝑅) = (SubGrp‘𝑂) |
7 | 6 | a1i 11 | . . . . . 6 ⊢ (𝑅 ∈ Ring → (SubGrp‘𝑅) = (SubGrp‘𝑂)) |
8 | 7 | eleq2d 2825 | . . . . 5 ⊢ (𝑅 ∈ Ring → (𝑥 ∈ (SubGrp‘𝑅) ↔ 𝑥 ∈ (SubGrp‘𝑂))) |
9 | ralcom 3236 | . . . . . . 7 ⊢ (∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (𝑦(.r‘𝑅)𝑧) ∈ 𝑥 ↔ ∀𝑧 ∈ 𝑥 ∀𝑦 ∈ 𝑥 (𝑦(.r‘𝑅)𝑧) ∈ 𝑥) | |
10 | eqid 2760 | . . . . . . . . . 10 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
11 | eqid 2760 | . . . . . . . . . 10 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
12 | eqid 2760 | . . . . . . . . . 10 ⊢ (.r‘𝑂) = (.r‘𝑂) | |
13 | 10, 11, 3, 12 | opprmul 18826 | . . . . . . . . 9 ⊢ (𝑧(.r‘𝑂)𝑦) = (𝑦(.r‘𝑅)𝑧) |
14 | 13 | eleq1i 2830 | . . . . . . . 8 ⊢ ((𝑧(.r‘𝑂)𝑦) ∈ 𝑥 ↔ (𝑦(.r‘𝑅)𝑧) ∈ 𝑥) |
15 | 14 | 2ralbii 3119 | . . . . . . 7 ⊢ (∀𝑧 ∈ 𝑥 ∀𝑦 ∈ 𝑥 (𝑧(.r‘𝑂)𝑦) ∈ 𝑥 ↔ ∀𝑧 ∈ 𝑥 ∀𝑦 ∈ 𝑥 (𝑦(.r‘𝑅)𝑧) ∈ 𝑥) |
16 | 9, 15 | bitr4i 267 | . . . . . 6 ⊢ (∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (𝑦(.r‘𝑅)𝑧) ∈ 𝑥 ↔ ∀𝑧 ∈ 𝑥 ∀𝑦 ∈ 𝑥 (𝑧(.r‘𝑂)𝑦) ∈ 𝑥) |
17 | 16 | a1i 11 | . . . . 5 ⊢ (𝑅 ∈ Ring → (∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (𝑦(.r‘𝑅)𝑧) ∈ 𝑥 ↔ ∀𝑧 ∈ 𝑥 ∀𝑦 ∈ 𝑥 (𝑧(.r‘𝑂)𝑦) ∈ 𝑥)) |
18 | 8, 17 | 3anbi13d 1550 | . . . 4 ⊢ (𝑅 ∈ Ring → ((𝑥 ∈ (SubGrp‘𝑅) ∧ (1r‘𝑅) ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (𝑦(.r‘𝑅)𝑧) ∈ 𝑥) ↔ (𝑥 ∈ (SubGrp‘𝑂) ∧ (1r‘𝑅) ∈ 𝑥 ∧ ∀𝑧 ∈ 𝑥 ∀𝑦 ∈ 𝑥 (𝑧(.r‘𝑂)𝑦) ∈ 𝑥))) |
19 | eqid 2760 | . . . . 5 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
20 | 10, 19, 11 | issubrg2 19002 | . . . 4 ⊢ (𝑅 ∈ Ring → (𝑥 ∈ (SubRing‘𝑅) ↔ (𝑥 ∈ (SubGrp‘𝑅) ∧ (1r‘𝑅) ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (𝑦(.r‘𝑅)𝑧) ∈ 𝑥))) |
21 | 3, 10 | opprbas 18829 | . . . . . 6 ⊢ (Base‘𝑅) = (Base‘𝑂) |
22 | 3, 19 | oppr1 18834 | . . . . . 6 ⊢ (1r‘𝑅) = (1r‘𝑂) |
23 | 21, 22, 12 | issubrg2 19002 | . . . . 5 ⊢ (𝑂 ∈ Ring → (𝑥 ∈ (SubRing‘𝑂) ↔ (𝑥 ∈ (SubGrp‘𝑂) ∧ (1r‘𝑅) ∈ 𝑥 ∧ ∀𝑧 ∈ 𝑥 ∀𝑦 ∈ 𝑥 (𝑧(.r‘𝑂)𝑦) ∈ 𝑥))) |
24 | 4, 23 | sylbi 207 | . . . 4 ⊢ (𝑅 ∈ Ring → (𝑥 ∈ (SubRing‘𝑂) ↔ (𝑥 ∈ (SubGrp‘𝑂) ∧ (1r‘𝑅) ∈ 𝑥 ∧ ∀𝑧 ∈ 𝑥 ∀𝑦 ∈ 𝑥 (𝑧(.r‘𝑂)𝑦) ∈ 𝑥))) |
25 | 18, 20, 24 | 3bitr4d 300 | . . 3 ⊢ (𝑅 ∈ Ring → (𝑥 ∈ (SubRing‘𝑅) ↔ 𝑥 ∈ (SubRing‘𝑂))) |
26 | 1, 5, 25 | pm5.21nii 367 | . 2 ⊢ (𝑥 ∈ (SubRing‘𝑅) ↔ 𝑥 ∈ (SubRing‘𝑂)) |
27 | 26 | eqriv 2757 | 1 ⊢ (SubRing‘𝑅) = (SubRing‘𝑂) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∧ w3a 1072 = wceq 1632 ∈ wcel 2139 ∀wral 3050 ‘cfv 6049 (class class class)co 6813 Basecbs 16059 .rcmulr 16144 SubGrpcsubg 17789 1rcur 18701 Ringcrg 18747 opprcoppr 18822 SubRingcsubrg 18978 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 ax-cnex 10184 ax-resscn 10185 ax-1cn 10186 ax-icn 10187 ax-addcl 10188 ax-addrcl 10189 ax-mulcl 10190 ax-mulrcl 10191 ax-mulcom 10192 ax-addass 10193 ax-mulass 10194 ax-distr 10195 ax-i2m1 10196 ax-1ne0 10197 ax-1rid 10198 ax-rnegex 10199 ax-rrecex 10200 ax-cnre 10201 ax-pre-lttri 10202 ax-pre-lttrn 10203 ax-pre-ltadd 10204 ax-pre-mulgt0 10205 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6774 df-ov 6816 df-oprab 6817 df-mpt2 6818 df-om 7231 df-tpos 7521 df-wrecs 7576 df-recs 7637 df-rdg 7675 df-er 7911 df-en 8122 df-dom 8123 df-sdom 8124 df-pnf 10268 df-mnf 10269 df-xr 10270 df-ltxr 10271 df-le 10272 df-sub 10460 df-neg 10461 df-nn 11213 df-2 11271 df-3 11272 df-ndx 16062 df-slot 16063 df-base 16065 df-sets 16066 df-ress 16067 df-plusg 16156 df-mulr 16157 df-0g 16304 df-mgm 17443 df-sgrp 17485 df-mnd 17496 df-grp 17626 df-subg 17792 df-mgp 18690 df-ur 18702 df-ring 18749 df-oppr 18823 df-subrg 18980 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |