![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > opprmulfval | Structured version Visualization version GIF version |
Description: Value of the multiplication operation of an opposite ring. (Contributed by Mario Carneiro, 1-Dec-2014.) |
Ref | Expression |
---|---|
opprval.1 | ⊢ 𝐵 = (Base‘𝑅) |
opprval.2 | ⊢ · = (.r‘𝑅) |
opprval.3 | ⊢ 𝑂 = (oppr‘𝑅) |
opprmulfval.4 | ⊢ ∙ = (.r‘𝑂) |
Ref | Expression |
---|---|
opprmulfval | ⊢ ∙ = tpos · |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opprmulfval.4 | . 2 ⊢ ∙ = (.r‘𝑂) | |
2 | opprval.2 | . . . . . . 7 ⊢ · = (.r‘𝑅) | |
3 | fvex 6364 | . . . . . . 7 ⊢ (.r‘𝑅) ∈ V | |
4 | 2, 3 | eqeltri 2836 | . . . . . 6 ⊢ · ∈ V |
5 | 4 | tposex 7557 | . . . . 5 ⊢ tpos · ∈ V |
6 | mulrid 16220 | . . . . . 6 ⊢ .r = Slot (.r‘ndx) | |
7 | 6 | setsid 16137 | . . . . 5 ⊢ ((𝑅 ∈ V ∧ tpos · ∈ V) → tpos · = (.r‘(𝑅 sSet 〈(.r‘ndx), tpos · 〉))) |
8 | 5, 7 | mpan2 709 | . . . 4 ⊢ (𝑅 ∈ V → tpos · = (.r‘(𝑅 sSet 〈(.r‘ndx), tpos · 〉))) |
9 | opprval.1 | . . . . . 6 ⊢ 𝐵 = (Base‘𝑅) | |
10 | opprval.3 | . . . . . 6 ⊢ 𝑂 = (oppr‘𝑅) | |
11 | 9, 2, 10 | opprval 18845 | . . . . 5 ⊢ 𝑂 = (𝑅 sSet 〈(.r‘ndx), tpos · 〉) |
12 | 11 | fveq2i 6357 | . . . 4 ⊢ (.r‘𝑂) = (.r‘(𝑅 sSet 〈(.r‘ndx), tpos · 〉)) |
13 | 8, 12 | syl6reqr 2814 | . . 3 ⊢ (𝑅 ∈ V → (.r‘𝑂) = tpos · ) |
14 | tpos0 7553 | . . . . 5 ⊢ tpos ∅ = ∅ | |
15 | 6 | str0 16134 | . . . . 5 ⊢ ∅ = (.r‘∅) |
16 | 14, 15 | eqtr2i 2784 | . . . 4 ⊢ (.r‘∅) = tpos ∅ |
17 | fvprc 6348 | . . . . . 6 ⊢ (¬ 𝑅 ∈ V → (oppr‘𝑅) = ∅) | |
18 | 10, 17 | syl5eq 2807 | . . . . 5 ⊢ (¬ 𝑅 ∈ V → 𝑂 = ∅) |
19 | 18 | fveq2d 6358 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (.r‘𝑂) = (.r‘∅)) |
20 | fvprc 6348 | . . . . . 6 ⊢ (¬ 𝑅 ∈ V → (.r‘𝑅) = ∅) | |
21 | 2, 20 | syl5eq 2807 | . . . . 5 ⊢ (¬ 𝑅 ∈ V → · = ∅) |
22 | 21 | tposeqd 7526 | . . . 4 ⊢ (¬ 𝑅 ∈ V → tpos · = tpos ∅) |
23 | 16, 19, 22 | 3eqtr4a 2821 | . . 3 ⊢ (¬ 𝑅 ∈ V → (.r‘𝑂) = tpos · ) |
24 | 13, 23 | pm2.61i 176 | . 2 ⊢ (.r‘𝑂) = tpos · |
25 | 1, 24 | eqtri 2783 | 1 ⊢ ∙ = tpos · |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1632 ∈ wcel 2140 Vcvv 3341 ∅c0 4059 〈cop 4328 ‘cfv 6050 (class class class)co 6815 tpos ctpos 7522 ndxcnx 16077 sSet csts 16078 Basecbs 16080 .rcmulr 16165 opprcoppr 18843 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-8 2142 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 ax-sep 4934 ax-nul 4942 ax-pow 4993 ax-pr 5056 ax-un 7116 ax-cnex 10205 ax-resscn 10206 ax-1cn 10207 ax-icn 10208 ax-addcl 10209 ax-addrcl 10210 ax-mulcl 10211 ax-mulrcl 10212 ax-i2m1 10217 ax-1ne0 10218 ax-rrecex 10221 ax-cnre 10222 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2048 df-eu 2612 df-mo 2613 df-clab 2748 df-cleq 2754 df-clel 2757 df-nfc 2892 df-ne 2934 df-ral 3056 df-rex 3057 df-reu 3058 df-rab 3060 df-v 3343 df-sbc 3578 df-csb 3676 df-dif 3719 df-un 3721 df-in 3723 df-ss 3730 df-pss 3732 df-nul 4060 df-if 4232 df-pw 4305 df-sn 4323 df-pr 4325 df-tp 4327 df-op 4329 df-uni 4590 df-iun 4675 df-br 4806 df-opab 4866 df-mpt 4883 df-tr 4906 df-id 5175 df-eprel 5180 df-po 5188 df-so 5189 df-fr 5226 df-we 5228 df-xp 5273 df-rel 5274 df-cnv 5275 df-co 5276 df-dm 5277 df-rn 5278 df-res 5279 df-ima 5280 df-pred 5842 df-ord 5888 df-on 5889 df-lim 5890 df-suc 5891 df-iota 6013 df-fun 6052 df-fn 6053 df-f 6054 df-f1 6055 df-fo 6056 df-f1o 6057 df-fv 6058 df-ov 6818 df-oprab 6819 df-mpt2 6820 df-om 7233 df-tpos 7523 df-wrecs 7578 df-recs 7639 df-rdg 7677 df-nn 11234 df-2 11292 df-3 11293 df-ndx 16083 df-slot 16084 df-sets 16087 df-mulr 16178 df-oppr 18844 |
This theorem is referenced by: opprmul 18847 |
Copyright terms: Public domain | W3C validator |