![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > opprlem | Structured version Visualization version GIF version |
Description: Lemma for opprbas 18837 and oppradd 18838. (Contributed by Mario Carneiro, 1-Dec-2014.) |
Ref | Expression |
---|---|
opprbas.1 | ⊢ 𝑂 = (oppr‘𝑅) |
opprlem.2 | ⊢ 𝐸 = Slot 𝑁 |
opprlem.3 | ⊢ 𝑁 ∈ ℕ |
opprlem.4 | ⊢ 𝑁 < 3 |
Ref | Expression |
---|---|
opprlem | ⊢ (𝐸‘𝑅) = (𝐸‘𝑂) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opprlem.2 | . . . 4 ⊢ 𝐸 = Slot 𝑁 | |
2 | opprlem.3 | . . . 4 ⊢ 𝑁 ∈ ℕ | |
3 | 1, 2 | ndxid 16090 | . . 3 ⊢ 𝐸 = Slot (𝐸‘ndx) |
4 | 2 | nnrei 11231 | . . . . 5 ⊢ 𝑁 ∈ ℝ |
5 | opprlem.4 | . . . . 5 ⊢ 𝑁 < 3 | |
6 | 4, 5 | ltneii 10352 | . . . 4 ⊢ 𝑁 ≠ 3 |
7 | 1, 2 | ndxarg 16089 | . . . . 5 ⊢ (𝐸‘ndx) = 𝑁 |
8 | mulrndx 16204 | . . . . 5 ⊢ (.r‘ndx) = 3 | |
9 | 7, 8 | neeq12i 3009 | . . . 4 ⊢ ((𝐸‘ndx) ≠ (.r‘ndx) ↔ 𝑁 ≠ 3) |
10 | 6, 9 | mpbir 221 | . . 3 ⊢ (𝐸‘ndx) ≠ (.r‘ndx) |
11 | 3, 10 | setsnid 16122 | . 2 ⊢ (𝐸‘𝑅) = (𝐸‘(𝑅 sSet 〈(.r‘ndx), tpos (.r‘𝑅)〉)) |
12 | eqid 2771 | . . . 4 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
13 | eqid 2771 | . . . 4 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
14 | opprbas.1 | . . . 4 ⊢ 𝑂 = (oppr‘𝑅) | |
15 | 12, 13, 14 | opprval 18832 | . . 3 ⊢ 𝑂 = (𝑅 sSet 〈(.r‘ndx), tpos (.r‘𝑅)〉) |
16 | 15 | fveq2i 6335 | . 2 ⊢ (𝐸‘𝑂) = (𝐸‘(𝑅 sSet 〈(.r‘ndx), tpos (.r‘𝑅)〉)) |
17 | 11, 16 | eqtr4i 2796 | 1 ⊢ (𝐸‘𝑅) = (𝐸‘𝑂) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1631 ∈ wcel 2145 ≠ wne 2943 〈cop 4322 class class class wbr 4786 ‘cfv 6031 (class class class)co 6793 tpos ctpos 7503 < clt 10276 ℕcn 11222 3c3 11273 ndxcnx 16061 sSet csts 16062 Slot cslot 16063 Basecbs 16064 .rcmulr 16150 opprcoppr 18830 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 ax-cnex 10194 ax-resscn 10195 ax-1cn 10196 ax-icn 10197 ax-addcl 10198 ax-addrcl 10199 ax-mulcl 10200 ax-mulrcl 10201 ax-i2m1 10206 ax-1ne0 10207 ax-rrecex 10210 ax-cnre 10211 ax-pre-lttri 10212 ax-pre-lttrn 10213 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-tp 4321 df-op 4323 df-uni 4575 df-iun 4656 df-br 4787 df-opab 4847 df-mpt 4864 df-tr 4887 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-ov 6796 df-oprab 6797 df-mpt2 6798 df-om 7213 df-tpos 7504 df-wrecs 7559 df-recs 7621 df-rdg 7659 df-er 7896 df-en 8110 df-dom 8111 df-sdom 8112 df-pnf 10278 df-mnf 10279 df-ltxr 10281 df-nn 11223 df-2 11281 df-3 11282 df-ndx 16067 df-slot 16068 df-sets 16071 df-mulr 16163 df-oppr 18831 |
This theorem is referenced by: opprbas 18837 oppradd 18838 |
Copyright terms: Public domain | W3C validator |