MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opprbas Structured version   Visualization version   GIF version

Theorem opprbas 18837
Description: Base set of an opposite ring. (Contributed by Mario Carneiro, 1-Dec-2014.)
Hypotheses
Ref Expression
opprbas.1 𝑂 = (oppr𝑅)
opprbas.2 𝐵 = (Base‘𝑅)
Assertion
Ref Expression
opprbas 𝐵 = (Base‘𝑂)

Proof of Theorem opprbas
StepHypRef Expression
1 opprbas.2 . 2 𝐵 = (Base‘𝑅)
2 opprbas.1 . . 3 𝑂 = (oppr𝑅)
3 df-base 16070 . . 3 Base = Slot 1
4 1nn 11233 . . 3 1 ∈ ℕ
5 1lt3 11398 . . 3 1 < 3
62, 3, 4, 5opprlem 18836 . 2 (Base‘𝑅) = (Base‘𝑂)
71, 6eqtri 2793 1 𝐵 = (Base‘𝑂)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1631  cfv 6031  1c1 10139  Basecbs 16064  opprcoppr 18830
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-om 7213  df-tpos 7504  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-er 7896  df-en 8110  df-dom 8111  df-sdom 8112  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-nn 11223  df-2 11281  df-3 11282  df-ndx 16067  df-slot 16068  df-base 16070  df-sets 16071  df-mulr 16163  df-oppr 18831
This theorem is referenced by:  opprring  18839  opprringb  18840  oppr0  18841  oppr1  18842  opprneg  18843  opprsubg  18844  mulgass3  18845  1unit  18866  opprunit  18869  crngunit  18870  unitmulcl  18872  unitgrp  18875  unitnegcl  18889  unitpropd  18905  opprirred  18910  isdrng2  18967  opprdrng  18981  isdrngrd  18983  subrguss  19005  subrgunit  19008  opprsubrg  19011  issrngd  19071  2idlcpbl  19449  crngridl  19453  opprnzr  19480  opprdomn  19516  fidomndrng  19522  psropprmul  19823  invrvald  20701  ply1divalg2  24118  rhmopp  30159  elrhmunit  30160  ldualsbase  34942  lduallmodlem  34961  lcdsbase  37410
  Copyright terms: Public domain W3C validator