Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  oppnid Structured version   Visualization version   GIF version

Theorem oppnid 25859
 Description: The "opposite to a line" relation is irreflexive. (Contributed by Thierry Arnoux, 4-Mar-2020.)
Hypotheses
Ref Expression
hpg.p 𝑃 = (Base‘𝐺)
hpg.d = (dist‘𝐺)
hpg.i 𝐼 = (Itv‘𝐺)
hpg.o 𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}
opphl.l 𝐿 = (LineG‘𝐺)
opphl.d (𝜑𝐷 ∈ ran 𝐿)
opphl.g (𝜑𝐺 ∈ TarskiG)
oppnid.1 (𝜑𝐴𝑃)
Assertion
Ref Expression
oppnid (𝜑 → ¬ 𝐴𝑂𝐴)
Distinct variable groups:   𝐷,𝑎,𝑏   𝐼,𝑎,𝑏   𝑃,𝑎,𝑏   𝑡,𝐴   𝑡,𝐷   𝑡,𝐺   𝑡,𝐿   𝑡,𝐼   𝑡,𝑂   𝑡,𝑃   𝜑,𝑡   𝑡,   𝑡,𝑎,𝑏
Allowed substitution hints:   𝜑(𝑎,𝑏)   𝐴(𝑎,𝑏)   𝐺(𝑎,𝑏)   𝐿(𝑎,𝑏)   (𝑎,𝑏)   𝑂(𝑎,𝑏)

Proof of Theorem oppnid
StepHypRef Expression
1 hpg.p . . . . 5 𝑃 = (Base‘𝐺)
2 hpg.d . . . . 5 = (dist‘𝐺)
3 hpg.i . . . . 5 𝐼 = (Itv‘𝐺)
4 opphl.g . . . . . 6 (𝜑𝐺 ∈ TarskiG)
54ad3antrrr 709 . . . . 5 ((((𝜑𝐴𝑂𝐴) ∧ 𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐴)) → 𝐺 ∈ TarskiG)
6 oppnid.1 . . . . . 6 (𝜑𝐴𝑃)
76ad3antrrr 709 . . . . 5 ((((𝜑𝐴𝑂𝐴) ∧ 𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐴)) → 𝐴𝑃)
8 opphl.l . . . . . 6 𝐿 = (LineG‘𝐺)
9 opphl.d . . . . . . 7 (𝜑𝐷 ∈ ran 𝐿)
109ad3antrrr 709 . . . . . 6 ((((𝜑𝐴𝑂𝐴) ∧ 𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐴)) → 𝐷 ∈ ran 𝐿)
11 simplr 752 . . . . . 6 ((((𝜑𝐴𝑂𝐴) ∧ 𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐴)) → 𝑡𝐷)
121, 8, 3, 5, 10, 11tglnpt 25665 . . . . 5 ((((𝜑𝐴𝑂𝐴) ∧ 𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐴)) → 𝑡𝑃)
13 simpr 471 . . . . 5 ((((𝜑𝐴𝑂𝐴) ∧ 𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐴)) → 𝑡 ∈ (𝐴𝐼𝐴))
141, 2, 3, 5, 7, 12, 13axtgbtwnid 25586 . . . 4 ((((𝜑𝐴𝑂𝐴) ∧ 𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐴)) → 𝐴 = 𝑡)
1514, 11eqeltrd 2850 . . 3 ((((𝜑𝐴𝑂𝐴) ∧ 𝑡𝐷) ∧ 𝑡 ∈ (𝐴𝐼𝐴)) → 𝐴𝐷)
16 hpg.o . . . . 5 𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}
171, 2, 3, 16, 6, 6islnopp 25852 . . . 4 (𝜑 → (𝐴𝑂𝐴 ↔ ((¬ 𝐴𝐷 ∧ ¬ 𝐴𝐷) ∧ ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝐴))))
1817simplbda 487 . . 3 ((𝜑𝐴𝑂𝐴) → ∃𝑡𝐷 𝑡 ∈ (𝐴𝐼𝐴))
1915, 18r19.29a 3226 . 2 ((𝜑𝐴𝑂𝐴) → 𝐴𝐷)
2017simprbda 486 . . 3 ((𝜑𝐴𝑂𝐴) → (¬ 𝐴𝐷 ∧ ¬ 𝐴𝐷))
2120simpld 482 . 2 ((𝜑𝐴𝑂𝐴) → ¬ 𝐴𝐷)
2219, 21pm2.65da 818 1 (𝜑 → ¬ 𝐴𝑂𝐴)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 382   = wceq 1631   ∈ wcel 2145  ∃wrex 3062   ∖ cdif 3720   class class class wbr 4787  {copab 4847  ran crn 5251  ‘cfv 6030  (class class class)co 6796  Basecbs 16064  distcds 16158  TarskiGcstrkg 25550  Itvcitv 25556  LineGclng 25557 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4916  ax-nul 4924  ax-pr 5035 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3353  df-sbc 3588  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-op 4324  df-uni 4576  df-br 4788  df-opab 4848  df-cnv 5258  df-dm 5260  df-rn 5261  df-iota 5993  df-fv 6038  df-ov 6799  df-oprab 6800  df-mpt2 6801  df-trkgb 25569  df-trkg 25573 This theorem is referenced by:  lnoppnhpg  25877
 Copyright terms: Public domain W3C validator