Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  opphllem2 Structured version   Visualization version   GIF version

Theorem opphllem2 25685
 Description: Lemma for opphl 25691. Lemma 9.3 of [Schwabhauser] p. 68. (Contributed by Thierry Arnoux, 21-Dec-2019.)
Hypotheses
Ref Expression
hpg.p 𝑃 = (Base‘𝐺)
hpg.d = (dist‘𝐺)
hpg.i 𝐼 = (Itv‘𝐺)
hpg.o 𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}
opphl.l 𝐿 = (LineG‘𝐺)
opphl.d (𝜑𝐷 ∈ ran 𝐿)
opphl.g (𝜑𝐺 ∈ TarskiG)
opphllem1.s 𝑆 = ((pInvG‘𝐺)‘𝑀)
opphllem1.a (𝜑𝐴𝑃)
opphllem1.b (𝜑𝐵𝑃)
opphllem1.c (𝜑𝐶𝑃)
opphllem1.r (𝜑𝑅𝐷)
opphllem1.o (𝜑𝐴𝑂𝐶)
opphllem1.m (𝜑𝑀𝐷)
opphllem1.n (𝜑𝐴 = (𝑆𝐶))
opphllem1.x (𝜑𝐴𝑅)
opphllem1.y (𝜑𝐵𝑅)
opphllem2.z (𝜑 → (𝐴 ∈ (𝑅𝐼𝐵) ∨ 𝐵 ∈ (𝑅𝐼𝐴)))
Assertion
Ref Expression
opphllem2 (𝜑𝐵𝑂𝐶)
Distinct variable groups:   𝐷,𝑎,𝑏   𝐼,𝑎,𝑏   𝑃,𝑎,𝑏   𝑡,𝐴   𝑡,𝐵   𝑡,𝐷   𝑡,𝑅   𝑡,𝐶   𝑡,𝐺   𝑡,𝐿   𝑡,𝐼   𝑡,𝑀   𝑡,𝑂   𝑡,𝑃   𝑡,𝑆   𝜑,𝑡   𝑡,   𝑡,𝑎,𝑏
Allowed substitution hints:   𝜑(𝑎,𝑏)   𝐴(𝑎,𝑏)   𝐵(𝑎,𝑏)   𝐶(𝑎,𝑏)   𝑅(𝑎,𝑏)   𝑆(𝑎,𝑏)   𝐺(𝑎,𝑏)   𝐿(𝑎,𝑏)   𝑀(𝑎,𝑏)   (𝑎,𝑏)   𝑂(𝑎,𝑏)

Proof of Theorem opphllem2
StepHypRef Expression
1 hpg.p . . 3 𝑃 = (Base‘𝐺)
2 hpg.d . . 3 = (dist‘𝐺)
3 hpg.i . . 3 𝐼 = (Itv‘𝐺)
4 hpg.o . . 3 𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}
5 opphl.l . . 3 𝐿 = (LineG‘𝐺)
6 opphl.d . . . 4 (𝜑𝐷 ∈ ran 𝐿)
76adantr 480 . . 3 ((𝜑𝐴 ∈ (𝑅𝐼𝐵)) → 𝐷 ∈ ran 𝐿)
8 opphl.g . . . 4 (𝜑𝐺 ∈ TarskiG)
98adantr 480 . . 3 ((𝜑𝐴 ∈ (𝑅𝐼𝐵)) → 𝐺 ∈ TarskiG)
10 opphllem1.c . . . 4 (𝜑𝐶𝑃)
1110adantr 480 . . 3 ((𝜑𝐴 ∈ (𝑅𝐼𝐵)) → 𝐶𝑃)
12 opphllem1.b . . . 4 (𝜑𝐵𝑃)
1312adantr 480 . . 3 ((𝜑𝐴 ∈ (𝑅𝐼𝐵)) → 𝐵𝑃)
14 opphllem1.s . . . 4 𝑆 = ((pInvG‘𝐺)‘𝑀)
15 eqid 2651 . . . . 5 (pInvG‘𝐺) = (pInvG‘𝐺)
16 opphllem1.m . . . . . . 7 (𝜑𝑀𝐷)
171, 5, 3, 8, 6, 16tglnpt 25489 . . . . . 6 (𝜑𝑀𝑃)
1817adantr 480 . . . . 5 ((𝜑𝐴 ∈ (𝑅𝐼𝐵)) → 𝑀𝑃)
191, 2, 3, 5, 15, 9, 18, 14, 13mircl 25601 . . . 4 ((𝜑𝐴 ∈ (𝑅𝐼𝐵)) → (𝑆𝐵) ∈ 𝑃)
2016adantr 480 . . . . 5 ((𝜑𝐴 ∈ (𝑅𝐼𝐵)) → 𝑀𝐷)
21 opphllem1.r . . . . . 6 (𝜑𝑅𝐷)
2221adantr 480 . . . . 5 ((𝜑𝐴 ∈ (𝑅𝐼𝐵)) → 𝑅𝐷)
231, 2, 3, 5, 15, 9, 14, 7, 20, 22mirln 25616 . . . 4 ((𝜑𝐴 ∈ (𝑅𝐼𝐵)) → (𝑆𝑅) ∈ 𝐷)
24 simpr 476 . . . . . . . . 9 ((((𝜑𝐴 ∈ (𝑅𝐼𝐵)) ∧ 𝐵𝐷) ∧ 𝐴 = 𝐵) → 𝐴 = 𝐵)
25 simplr 807 . . . . . . . . 9 ((((𝜑𝐴 ∈ (𝑅𝐼𝐵)) ∧ 𝐵𝐷) ∧ 𝐴 = 𝐵) → 𝐵𝐷)
2624, 25eqeltrd 2730 . . . . . . . 8 ((((𝜑𝐴 ∈ (𝑅𝐼𝐵)) ∧ 𝐵𝐷) ∧ 𝐴 = 𝐵) → 𝐴𝐷)
278ad3antrrr 766 . . . . . . . . . 10 ((((𝜑𝐴 ∈ (𝑅𝐼𝐵)) ∧ 𝐵𝐷) ∧ 𝐴𝐵) → 𝐺 ∈ TarskiG)
2812ad3antrrr 766 . . . . . . . . . 10 ((((𝜑𝐴 ∈ (𝑅𝐼𝐵)) ∧ 𝐵𝐷) ∧ 𝐴𝐵) → 𝐵𝑃)
291, 5, 3, 8, 6, 21tglnpt 25489 . . . . . . . . . . 11 (𝜑𝑅𝑃)
3029ad3antrrr 766 . . . . . . . . . 10 ((((𝜑𝐴 ∈ (𝑅𝐼𝐵)) ∧ 𝐵𝐷) ∧ 𝐴𝐵) → 𝑅𝑃)
31 opphllem1.a . . . . . . . . . . 11 (𝜑𝐴𝑃)
3231ad3antrrr 766 . . . . . . . . . 10 ((((𝜑𝐴 ∈ (𝑅𝐼𝐵)) ∧ 𝐵𝐷) ∧ 𝐴𝐵) → 𝐴𝑃)
33 opphllem1.y . . . . . . . . . . 11 (𝜑𝐵𝑅)
3433ad3antrrr 766 . . . . . . . . . 10 ((((𝜑𝐴 ∈ (𝑅𝐼𝐵)) ∧ 𝐵𝐷) ∧ 𝐴𝐵) → 𝐵𝑅)
3534necomd 2878 . . . . . . . . . . 11 ((((𝜑𝐴 ∈ (𝑅𝐼𝐵)) ∧ 𝐵𝐷) ∧ 𝐴𝐵) → 𝑅𝐵)
36 simpllr 815 . . . . . . . . . . 11 ((((𝜑𝐴 ∈ (𝑅𝐼𝐵)) ∧ 𝐵𝐷) ∧ 𝐴𝐵) → 𝐴 ∈ (𝑅𝐼𝐵))
371, 3, 5, 27, 30, 28, 32, 35, 36btwnlng1 25559 . . . . . . . . . 10 ((((𝜑𝐴 ∈ (𝑅𝐼𝐵)) ∧ 𝐵𝐷) ∧ 𝐴𝐵) → 𝐴 ∈ (𝑅𝐿𝐵))
381, 3, 5, 27, 28, 30, 32, 34, 37lncom 25562 . . . . . . . . 9 ((((𝜑𝐴 ∈ (𝑅𝐼𝐵)) ∧ 𝐵𝐷) ∧ 𝐴𝐵) → 𝐴 ∈ (𝐵𝐿𝑅))
396ad3antrrr 766 . . . . . . . . . 10 ((((𝜑𝐴 ∈ (𝑅𝐼𝐵)) ∧ 𝐵𝐷) ∧ 𝐴𝐵) → 𝐷 ∈ ran 𝐿)
40 simplr 807 . . . . . . . . . 10 ((((𝜑𝐴 ∈ (𝑅𝐼𝐵)) ∧ 𝐵𝐷) ∧ 𝐴𝐵) → 𝐵𝐷)
4121ad3antrrr 766 . . . . . . . . . 10 ((((𝜑𝐴 ∈ (𝑅𝐼𝐵)) ∧ 𝐵𝐷) ∧ 𝐴𝐵) → 𝑅𝐷)
421, 3, 5, 27, 28, 30, 34, 34, 39, 40, 41tglinethru 25576 . . . . . . . . 9 ((((𝜑𝐴 ∈ (𝑅𝐼𝐵)) ∧ 𝐵𝐷) ∧ 𝐴𝐵) → 𝐷 = (𝐵𝐿𝑅))
4338, 42eleqtrrd 2733 . . . . . . . 8 ((((𝜑𝐴 ∈ (𝑅𝐼𝐵)) ∧ 𝐵𝐷) ∧ 𝐴𝐵) → 𝐴𝐷)
4426, 43pm2.61dane 2910 . . . . . . 7 (((𝜑𝐴 ∈ (𝑅𝐼𝐵)) ∧ 𝐵𝐷) → 𝐴𝐷)
45 opphllem1.o . . . . . . . . 9 (𝜑𝐴𝑂𝐶)
461, 2, 3, 4, 5, 6, 8, 31, 10, 45oppne1 25678 . . . . . . . 8 (𝜑 → ¬ 𝐴𝐷)
4746ad2antrr 762 . . . . . . 7 (((𝜑𝐴 ∈ (𝑅𝐼𝐵)) ∧ 𝐵𝐷) → ¬ 𝐴𝐷)
4844, 47pm2.65da 599 . . . . . 6 ((𝜑𝐴 ∈ (𝑅𝐼𝐵)) → ¬ 𝐵𝐷)
499adantr 480 . . . . . . . 8 (((𝜑𝐴 ∈ (𝑅𝐼𝐵)) ∧ (𝑆𝐵) ∈ 𝐷) → 𝐺 ∈ TarskiG)
5018adantr 480 . . . . . . . 8 (((𝜑𝐴 ∈ (𝑅𝐼𝐵)) ∧ (𝑆𝐵) ∈ 𝐷) → 𝑀𝑃)
5113adantr 480 . . . . . . . 8 (((𝜑𝐴 ∈ (𝑅𝐼𝐵)) ∧ (𝑆𝐵) ∈ 𝐷) → 𝐵𝑃)
521, 2, 3, 5, 15, 49, 50, 14, 51mirmir 25602 . . . . . . 7 (((𝜑𝐴 ∈ (𝑅𝐼𝐵)) ∧ (𝑆𝐵) ∈ 𝐷) → (𝑆‘(𝑆𝐵)) = 𝐵)
537adantr 480 . . . . . . . 8 (((𝜑𝐴 ∈ (𝑅𝐼𝐵)) ∧ (𝑆𝐵) ∈ 𝐷) → 𝐷 ∈ ran 𝐿)
5420adantr 480 . . . . . . . 8 (((𝜑𝐴 ∈ (𝑅𝐼𝐵)) ∧ (𝑆𝐵) ∈ 𝐷) → 𝑀𝐷)
55 simpr 476 . . . . . . . 8 (((𝜑𝐴 ∈ (𝑅𝐼𝐵)) ∧ (𝑆𝐵) ∈ 𝐷) → (𝑆𝐵) ∈ 𝐷)
561, 2, 3, 5, 15, 49, 14, 53, 54, 55mirln 25616 . . . . . . 7 (((𝜑𝐴 ∈ (𝑅𝐼𝐵)) ∧ (𝑆𝐵) ∈ 𝐷) → (𝑆‘(𝑆𝐵)) ∈ 𝐷)
5752, 56eqeltrrd 2731 . . . . . 6 (((𝜑𝐴 ∈ (𝑅𝐼𝐵)) ∧ (𝑆𝐵) ∈ 𝐷) → 𝐵𝐷)
5848, 57mtand 692 . . . . 5 ((𝜑𝐴 ∈ (𝑅𝐼𝐵)) → ¬ (𝑆𝐵) ∈ 𝐷)
591, 2, 3, 5, 15, 9, 18, 14, 13mirbtwn 25598 . . . . 5 ((𝜑𝐴 ∈ (𝑅𝐼𝐵)) → 𝑀 ∈ ((𝑆𝐵)𝐼𝐵))
601, 2, 3, 4, 19, 13, 20, 58, 48, 59islnoppd 25677 . . . 4 ((𝜑𝐴 ∈ (𝑅𝐼𝐵)) → (𝑆𝐵)𝑂𝐵)
61 eqidd 2652 . . . 4 ((𝜑𝐴 ∈ (𝑅𝐼𝐵)) → (𝑆𝐵) = (𝑆𝐵))
62 nelne2 2920 . . . . . 6 (((𝑆𝑅) ∈ 𝐷 ∧ ¬ (𝑆𝐵) ∈ 𝐷) → (𝑆𝑅) ≠ (𝑆𝐵))
6323, 58, 62syl2anc 694 . . . . 5 ((𝜑𝐴 ∈ (𝑅𝐼𝐵)) → (𝑆𝑅) ≠ (𝑆𝐵))
6463necomd 2878 . . . 4 ((𝜑𝐴 ∈ (𝑅𝐼𝐵)) → (𝑆𝐵) ≠ (𝑆𝑅))
651, 2, 3, 4, 5, 6, 8, 31, 10, 45oppne2 25679 . . . . . . 7 (𝜑 → ¬ 𝐶𝐷)
6665adantr 480 . . . . . 6 ((𝜑𝐴 ∈ (𝑅𝐼𝐵)) → ¬ 𝐶𝐷)
67 nelne2 2920 . . . . . 6 (((𝑆𝑅) ∈ 𝐷 ∧ ¬ 𝐶𝐷) → (𝑆𝑅) ≠ 𝐶)
6823, 66, 67syl2anc 694 . . . . 5 ((𝜑𝐴 ∈ (𝑅𝐼𝐵)) → (𝑆𝑅) ≠ 𝐶)
6968necomd 2878 . . . 4 ((𝜑𝐴 ∈ (𝑅𝐼𝐵)) → 𝐶 ≠ (𝑆𝑅))
70 opphllem1.n . . . . . . . 8 (𝜑𝐴 = (𝑆𝐶))
7170eqcomd 2657 . . . . . . 7 (𝜑 → (𝑆𝐶) = 𝐴)
721, 2, 3, 5, 15, 8, 17, 14, 10, 71mircom 25603 . . . . . 6 (𝜑 → (𝑆𝐴) = 𝐶)
7372adantr 480 . . . . 5 ((𝜑𝐴 ∈ (𝑅𝐼𝐵)) → (𝑆𝐴) = 𝐶)
7429adantr 480 . . . . . 6 ((𝜑𝐴 ∈ (𝑅𝐼𝐵)) → 𝑅𝑃)
7531adantr 480 . . . . . 6 ((𝜑𝐴 ∈ (𝑅𝐼𝐵)) → 𝐴𝑃)
76 simpr 476 . . . . . 6 ((𝜑𝐴 ∈ (𝑅𝐼𝐵)) → 𝐴 ∈ (𝑅𝐼𝐵))
771, 2, 3, 5, 15, 9, 18, 14, 74, 75, 13, 76mirbtwni 25611 . . . . 5 ((𝜑𝐴 ∈ (𝑅𝐼𝐵)) → (𝑆𝐴) ∈ ((𝑆𝑅)𝐼(𝑆𝐵)))
7873, 77eqeltrrd 2731 . . . 4 ((𝜑𝐴 ∈ (𝑅𝐼𝐵)) → 𝐶 ∈ ((𝑆𝑅)𝐼(𝑆𝐵)))
791, 2, 3, 4, 5, 7, 9, 14, 19, 11, 13, 23, 60, 20, 61, 64, 69, 78opphllem1 25684 . . 3 ((𝜑𝐴 ∈ (𝑅𝐼𝐵)) → 𝐶𝑂𝐵)
801, 2, 3, 4, 5, 7, 9, 11, 13, 79oppcom 25681 . 2 ((𝜑𝐴 ∈ (𝑅𝐼𝐵)) → 𝐵𝑂𝐶)
816adantr 480 . . 3 ((𝜑𝐵 ∈ (𝑅𝐼𝐴)) → 𝐷 ∈ ran 𝐿)
828adantr 480 . . 3 ((𝜑𝐵 ∈ (𝑅𝐼𝐴)) → 𝐺 ∈ TarskiG)
8331adantr 480 . . 3 ((𝜑𝐵 ∈ (𝑅𝐼𝐴)) → 𝐴𝑃)
8412adantr 480 . . 3 ((𝜑𝐵 ∈ (𝑅𝐼𝐴)) → 𝐵𝑃)
8510adantr 480 . . 3 ((𝜑𝐵 ∈ (𝑅𝐼𝐴)) → 𝐶𝑃)
8621adantr 480 . . 3 ((𝜑𝐵 ∈ (𝑅𝐼𝐴)) → 𝑅𝐷)
8745adantr 480 . . 3 ((𝜑𝐵 ∈ (𝑅𝐼𝐴)) → 𝐴𝑂𝐶)
8816adantr 480 . . 3 ((𝜑𝐵 ∈ (𝑅𝐼𝐴)) → 𝑀𝐷)
8970adantr 480 . . 3 ((𝜑𝐵 ∈ (𝑅𝐼𝐴)) → 𝐴 = (𝑆𝐶))
90 opphllem1.x . . . 4 (𝜑𝐴𝑅)
9190adantr 480 . . 3 ((𝜑𝐵 ∈ (𝑅𝐼𝐴)) → 𝐴𝑅)
9233adantr 480 . . 3 ((𝜑𝐵 ∈ (𝑅𝐼𝐴)) → 𝐵𝑅)
93 simpr 476 . . 3 ((𝜑𝐵 ∈ (𝑅𝐼𝐴)) → 𝐵 ∈ (𝑅𝐼𝐴))
941, 2, 3, 4, 5, 81, 82, 14, 83, 84, 85, 86, 87, 88, 89, 91, 92, 93opphllem1 25684 . 2 ((𝜑𝐵 ∈ (𝑅𝐼𝐴)) → 𝐵𝑂𝐶)
95 opphllem2.z . 2 (𝜑 → (𝐴 ∈ (𝑅𝐼𝐵) ∨ 𝐵 ∈ (𝑅𝐼𝐴)))
9680, 94, 95mpjaodan 844 1 (𝜑𝐵𝑂𝐶)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∨ wo 382   ∧ wa 383   = wceq 1523   ∈ wcel 2030   ≠ wne 2823  ∃wrex 2942   ∖ cdif 3604   class class class wbr 4685  {copab 4745  ran crn 5144  ‘cfv 5926  (class class class)co 6690  Basecbs 15904  distcds 15997  TarskiGcstrkg 25374  Itvcitv 25380  LineGclng 25381  pInvGcmir 25592 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-pm 7902  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-card 8803  df-cda 9028  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-2 11117  df-3 11118  df-n0 11331  df-xnn0 11402  df-z 11416  df-uz 11726  df-fz 12365  df-fzo 12505  df-hash 13158  df-word 13331  df-concat 13333  df-s1 13334  df-s2 13639  df-s3 13640  df-trkgc 25392  df-trkgb 25393  df-trkgcb 25394  df-trkg 25397  df-cgrg 25451  df-mir 25593 This theorem is referenced by:  opphllem4  25687  opphl  25691
 Copyright terms: Public domain W3C validator