MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opphllem1 Structured version   Visualization version   GIF version

Theorem opphllem1 25838
Description: Lemma for opphl 25845. (Contributed by Thierry Arnoux, 20-Dec-2019.)
Hypotheses
Ref Expression
hpg.p 𝑃 = (Base‘𝐺)
hpg.d = (dist‘𝐺)
hpg.i 𝐼 = (Itv‘𝐺)
hpg.o 𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}
opphl.l 𝐿 = (LineG‘𝐺)
opphl.d (𝜑𝐷 ∈ ran 𝐿)
opphl.g (𝜑𝐺 ∈ TarskiG)
opphllem1.s 𝑆 = ((pInvG‘𝐺)‘𝑀)
opphllem1.a (𝜑𝐴𝑃)
opphllem1.b (𝜑𝐵𝑃)
opphllem1.c (𝜑𝐶𝑃)
opphllem1.r (𝜑𝑅𝐷)
opphllem1.o (𝜑𝐴𝑂𝐶)
opphllem1.m (𝜑𝑀𝐷)
opphllem1.n (𝜑𝐴 = (𝑆𝐶))
opphllem1.x (𝜑𝐴𝑅)
opphllem1.y (𝜑𝐵𝑅)
opphllem1.z (𝜑𝐵 ∈ (𝑅𝐼𝐴))
Assertion
Ref Expression
opphllem1 (𝜑𝐵𝑂𝐶)
Distinct variable groups:   𝐷,𝑎,𝑏   𝐼,𝑎,𝑏   𝑃,𝑎,𝑏   𝑡,𝐴   𝑡,𝐵   𝑡,𝐷   𝑡,𝑅   𝑡,𝐶   𝑡,𝐺   𝑡,𝐿   𝑡,𝐼   𝑡,𝑀   𝑡,𝑂   𝑡,𝑃   𝑡,𝑆   𝜑,𝑡   𝑡,   𝑡,𝑎,𝑏
Allowed substitution hints:   𝜑(𝑎,𝑏)   𝐴(𝑎,𝑏)   𝐵(𝑎,𝑏)   𝐶(𝑎,𝑏)   𝑅(𝑎,𝑏)   𝑆(𝑎,𝑏)   𝐺(𝑎,𝑏)   𝐿(𝑎,𝑏)   𝑀(𝑎,𝑏)   (𝑎,𝑏)   𝑂(𝑎,𝑏)

Proof of Theorem opphllem1
StepHypRef Expression
1 simpr 479 . . . . . 6 (((𝜑𝐵𝐷) ∧ 𝐴 = 𝐵) → 𝐴 = 𝐵)
2 simplr 809 . . . . . 6 (((𝜑𝐵𝐷) ∧ 𝐴 = 𝐵) → 𝐵𝐷)
31, 2eqeltrd 2839 . . . . 5 (((𝜑𝐵𝐷) ∧ 𝐴 = 𝐵) → 𝐴𝐷)
4 hpg.p . . . . . . 7 𝑃 = (Base‘𝐺)
5 hpg.i . . . . . . 7 𝐼 = (Itv‘𝐺)
6 opphl.l . . . . . . 7 𝐿 = (LineG‘𝐺)
7 opphl.g . . . . . . . 8 (𝜑𝐺 ∈ TarskiG)
87ad2antrr 764 . . . . . . 7 (((𝜑𝐵𝐷) ∧ 𝐴𝐵) → 𝐺 ∈ TarskiG)
9 opphllem1.b . . . . . . . 8 (𝜑𝐵𝑃)
109ad2antrr 764 . . . . . . 7 (((𝜑𝐵𝐷) ∧ 𝐴𝐵) → 𝐵𝑃)
11 opphl.d . . . . . . . . 9 (𝜑𝐷 ∈ ran 𝐿)
12 opphllem1.r . . . . . . . . 9 (𝜑𝑅𝐷)
134, 6, 5, 7, 11, 12tglnpt 25643 . . . . . . . 8 (𝜑𝑅𝑃)
1413ad2antrr 764 . . . . . . 7 (((𝜑𝐵𝐷) ∧ 𝐴𝐵) → 𝑅𝑃)
15 opphllem1.a . . . . . . . 8 (𝜑𝐴𝑃)
1615ad2antrr 764 . . . . . . 7 (((𝜑𝐵𝐷) ∧ 𝐴𝐵) → 𝐴𝑃)
17 opphllem1.y . . . . . . . 8 (𝜑𝐵𝑅)
1817ad2antrr 764 . . . . . . 7 (((𝜑𝐵𝐷) ∧ 𝐴𝐵) → 𝐵𝑅)
1918necomd 2987 . . . . . . . 8 (((𝜑𝐵𝐷) ∧ 𝐴𝐵) → 𝑅𝐵)
20 opphllem1.z . . . . . . . . 9 (𝜑𝐵 ∈ (𝑅𝐼𝐴))
2120ad2antrr 764 . . . . . . . 8 (((𝜑𝐵𝐷) ∧ 𝐴𝐵) → 𝐵 ∈ (𝑅𝐼𝐴))
224, 5, 6, 8, 14, 10, 16, 19, 21btwnlng3 25715 . . . . . . 7 (((𝜑𝐵𝐷) ∧ 𝐴𝐵) → 𝐴 ∈ (𝑅𝐿𝐵))
234, 5, 6, 8, 10, 14, 16, 18, 22lncom 25716 . . . . . 6 (((𝜑𝐵𝐷) ∧ 𝐴𝐵) → 𝐴 ∈ (𝐵𝐿𝑅))
2411ad2antrr 764 . . . . . . 7 (((𝜑𝐵𝐷) ∧ 𝐴𝐵) → 𝐷 ∈ ran 𝐿)
25 simplr 809 . . . . . . 7 (((𝜑𝐵𝐷) ∧ 𝐴𝐵) → 𝐵𝐷)
2612ad2antrr 764 . . . . . . 7 (((𝜑𝐵𝐷) ∧ 𝐴𝐵) → 𝑅𝐷)
274, 5, 6, 8, 10, 14, 18, 18, 24, 25, 26tglinethru 25730 . . . . . 6 (((𝜑𝐵𝐷) ∧ 𝐴𝐵) → 𝐷 = (𝐵𝐿𝑅))
2823, 27eleqtrrd 2842 . . . . 5 (((𝜑𝐵𝐷) ∧ 𝐴𝐵) → 𝐴𝐷)
293, 28pm2.61dane 3019 . . . 4 ((𝜑𝐵𝐷) → 𝐴𝐷)
30 hpg.d . . . . . 6 = (dist‘𝐺)
31 hpg.o . . . . . 6 𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}
32 opphllem1.c . . . . . 6 (𝜑𝐶𝑃)
33 opphllem1.o . . . . . 6 (𝜑𝐴𝑂𝐶)
344, 30, 5, 31, 6, 11, 7, 15, 32, 33oppne1 25832 . . . . 5 (𝜑 → ¬ 𝐴𝐷)
3534adantr 472 . . . 4 ((𝜑𝐵𝐷) → ¬ 𝐴𝐷)
3629, 35pm2.65da 601 . . 3 (𝜑 → ¬ 𝐵𝐷)
374, 30, 5, 31, 6, 11, 7, 15, 32, 33oppne2 25833 . . 3 (𝜑 → ¬ 𝐶𝐷)
38 opphllem1.m . . . . . 6 (𝜑𝑀𝐷)
394, 6, 5, 7, 11, 38tglnpt 25643 . . . . 5 (𝜑𝑀𝑃)
40 eqid 2760 . . . . . . 7 (pInvG‘𝐺) = (pInvG‘𝐺)
41 opphllem1.s . . . . . . 7 𝑆 = ((pInvG‘𝐺)‘𝑀)
424, 30, 5, 6, 40, 7, 39, 41, 15mirbtwn 25752 . . . . . 6 (𝜑𝑀 ∈ ((𝑆𝐴)𝐼𝐴))
43 opphllem1.n . . . . . . . . 9 (𝜑𝐴 = (𝑆𝐶))
4443eqcomd 2766 . . . . . . . 8 (𝜑 → (𝑆𝐶) = 𝐴)
454, 30, 5, 6, 40, 7, 39, 41, 32, 44mircom 25757 . . . . . . 7 (𝜑 → (𝑆𝐴) = 𝐶)
4645oveq1d 6828 . . . . . 6 (𝜑 → ((𝑆𝐴)𝐼𝐴) = (𝐶𝐼𝐴))
4742, 46eleqtrd 2841 . . . . 5 (𝜑𝑀 ∈ (𝐶𝐼𝐴))
484, 30, 5, 7, 13, 32, 15, 9, 39, 20, 47axtgpasch 25565 . . . 4 (𝜑 → ∃𝑡𝑃 (𝑡 ∈ (𝐵𝐼𝐶) ∧ 𝑡 ∈ (𝑀𝐼𝑅)))
497ad2antrr 764 . . . . . . . . . 10 (((𝜑 ∧ (𝑡𝑃 ∧ (𝑡 ∈ (𝐵𝐼𝐶) ∧ 𝑡 ∈ (𝑀𝐼𝑅)))) ∧ 𝑀 = 𝑅) → 𝐺 ∈ TarskiG)
5013ad2antrr 764 . . . . . . . . . 10 (((𝜑 ∧ (𝑡𝑃 ∧ (𝑡 ∈ (𝐵𝐼𝐶) ∧ 𝑡 ∈ (𝑀𝐼𝑅)))) ∧ 𝑀 = 𝑅) → 𝑅𝑃)
51 simplrl 819 . . . . . . . . . 10 (((𝜑 ∧ (𝑡𝑃 ∧ (𝑡 ∈ (𝐵𝐼𝐶) ∧ 𝑡 ∈ (𝑀𝐼𝑅)))) ∧ 𝑀 = 𝑅) → 𝑡𝑃)
52 simplrr 820 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑡𝑃 ∧ (𝑡 ∈ (𝐵𝐼𝐶) ∧ 𝑡 ∈ (𝑀𝐼𝑅)))) ∧ 𝑀 = 𝑅) → (𝑡 ∈ (𝐵𝐼𝐶) ∧ 𝑡 ∈ (𝑀𝐼𝑅)))
5352simprd 482 . . . . . . . . . . 11 (((𝜑 ∧ (𝑡𝑃 ∧ (𝑡 ∈ (𝐵𝐼𝐶) ∧ 𝑡 ∈ (𝑀𝐼𝑅)))) ∧ 𝑀 = 𝑅) → 𝑡 ∈ (𝑀𝐼𝑅))
54 simpr 479 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑡𝑃 ∧ (𝑡 ∈ (𝐵𝐼𝐶) ∧ 𝑡 ∈ (𝑀𝐼𝑅)))) ∧ 𝑀 = 𝑅) → 𝑀 = 𝑅)
5554oveq1d 6828 . . . . . . . . . . 11 (((𝜑 ∧ (𝑡𝑃 ∧ (𝑡 ∈ (𝐵𝐼𝐶) ∧ 𝑡 ∈ (𝑀𝐼𝑅)))) ∧ 𝑀 = 𝑅) → (𝑀𝐼𝑅) = (𝑅𝐼𝑅))
5653, 55eleqtrd 2841 . . . . . . . . . 10 (((𝜑 ∧ (𝑡𝑃 ∧ (𝑡 ∈ (𝐵𝐼𝐶) ∧ 𝑡 ∈ (𝑀𝐼𝑅)))) ∧ 𝑀 = 𝑅) → 𝑡 ∈ (𝑅𝐼𝑅))
574, 30, 5, 49, 50, 51, 56axtgbtwnid 25564 . . . . . . . . 9 (((𝜑 ∧ (𝑡𝑃 ∧ (𝑡 ∈ (𝐵𝐼𝐶) ∧ 𝑡 ∈ (𝑀𝐼𝑅)))) ∧ 𝑀 = 𝑅) → 𝑅 = 𝑡)
5812ad2antrr 764 . . . . . . . . 9 (((𝜑 ∧ (𝑡𝑃 ∧ (𝑡 ∈ (𝐵𝐼𝐶) ∧ 𝑡 ∈ (𝑀𝐼𝑅)))) ∧ 𝑀 = 𝑅) → 𝑅𝐷)
5957, 58eqeltrrd 2840 . . . . . . . 8 (((𝜑 ∧ (𝑡𝑃 ∧ (𝑡 ∈ (𝐵𝐼𝐶) ∧ 𝑡 ∈ (𝑀𝐼𝑅)))) ∧ 𝑀 = 𝑅) → 𝑡𝐷)
607adantr 472 . . . . . . . . . . 11 ((𝜑𝑀𝑅) → 𝐺 ∈ TarskiG)
6160adantlr 753 . . . . . . . . . 10 (((𝜑 ∧ (𝑡𝑃 ∧ (𝑡 ∈ (𝐵𝐼𝐶) ∧ 𝑡 ∈ (𝑀𝐼𝑅)))) ∧ 𝑀𝑅) → 𝐺 ∈ TarskiG)
6239adantr 472 . . . . . . . . . . 11 ((𝜑𝑀𝑅) → 𝑀𝑃)
6362adantlr 753 . . . . . . . . . 10 (((𝜑 ∧ (𝑡𝑃 ∧ (𝑡 ∈ (𝐵𝐼𝐶) ∧ 𝑡 ∈ (𝑀𝐼𝑅)))) ∧ 𝑀𝑅) → 𝑀𝑃)
6413adantr 472 . . . . . . . . . . 11 ((𝜑𝑀𝑅) → 𝑅𝑃)
6564adantlr 753 . . . . . . . . . 10 (((𝜑 ∧ (𝑡𝑃 ∧ (𝑡 ∈ (𝐵𝐼𝐶) ∧ 𝑡 ∈ (𝑀𝐼𝑅)))) ∧ 𝑀𝑅) → 𝑅𝑃)
66 simplrl 819 . . . . . . . . . 10 (((𝜑 ∧ (𝑡𝑃 ∧ (𝑡 ∈ (𝐵𝐼𝐶) ∧ 𝑡 ∈ (𝑀𝐼𝑅)))) ∧ 𝑀𝑅) → 𝑡𝑃)
67 simpr 479 . . . . . . . . . 10 (((𝜑 ∧ (𝑡𝑃 ∧ (𝑡 ∈ (𝐵𝐼𝐶) ∧ 𝑡 ∈ (𝑀𝐼𝑅)))) ∧ 𝑀𝑅) → 𝑀𝑅)
68 simplrr 820 . . . . . . . . . . 11 (((𝜑 ∧ (𝑡𝑃 ∧ (𝑡 ∈ (𝐵𝐼𝐶) ∧ 𝑡 ∈ (𝑀𝐼𝑅)))) ∧ 𝑀𝑅) → (𝑡 ∈ (𝐵𝐼𝐶) ∧ 𝑡 ∈ (𝑀𝐼𝑅)))
6968simprd 482 . . . . . . . . . 10 (((𝜑 ∧ (𝑡𝑃 ∧ (𝑡 ∈ (𝐵𝐼𝐶) ∧ 𝑡 ∈ (𝑀𝐼𝑅)))) ∧ 𝑀𝑅) → 𝑡 ∈ (𝑀𝐼𝑅))
704, 5, 6, 61, 63, 65, 66, 67, 69btwnlng1 25713 . . . . . . . . 9 (((𝜑 ∧ (𝑡𝑃 ∧ (𝑡 ∈ (𝐵𝐼𝐶) ∧ 𝑡 ∈ (𝑀𝐼𝑅)))) ∧ 𝑀𝑅) → 𝑡 ∈ (𝑀𝐿𝑅))
71 simpr 479 . . . . . . . . . . 11 ((𝜑𝑀𝑅) → 𝑀𝑅)
7211adantr 472 . . . . . . . . . . 11 ((𝜑𝑀𝑅) → 𝐷 ∈ ran 𝐿)
7338adantr 472 . . . . . . . . . . 11 ((𝜑𝑀𝑅) → 𝑀𝐷)
7412adantr 472 . . . . . . . . . . 11 ((𝜑𝑀𝑅) → 𝑅𝐷)
754, 5, 6, 60, 62, 64, 71, 71, 72, 73, 74tglinethru 25730 . . . . . . . . . 10 ((𝜑𝑀𝑅) → 𝐷 = (𝑀𝐿𝑅))
7675adantlr 753 . . . . . . . . 9 (((𝜑 ∧ (𝑡𝑃 ∧ (𝑡 ∈ (𝐵𝐼𝐶) ∧ 𝑡 ∈ (𝑀𝐼𝑅)))) ∧ 𝑀𝑅) → 𝐷 = (𝑀𝐿𝑅))
7770, 76eleqtrrd 2842 . . . . . . . 8 (((𝜑 ∧ (𝑡𝑃 ∧ (𝑡 ∈ (𝐵𝐼𝐶) ∧ 𝑡 ∈ (𝑀𝐼𝑅)))) ∧ 𝑀𝑅) → 𝑡𝐷)
7859, 77pm2.61dane 3019 . . . . . . 7 ((𝜑 ∧ (𝑡𝑃 ∧ (𝑡 ∈ (𝐵𝐼𝐶) ∧ 𝑡 ∈ (𝑀𝐼𝑅)))) → 𝑡𝐷)
79 simprrl 823 . . . . . . 7 ((𝜑 ∧ (𝑡𝑃 ∧ (𝑡 ∈ (𝐵𝐼𝐶) ∧ 𝑡 ∈ (𝑀𝐼𝑅)))) → 𝑡 ∈ (𝐵𝐼𝐶))
8078, 79jca 555 . . . . . 6 ((𝜑 ∧ (𝑡𝑃 ∧ (𝑡 ∈ (𝐵𝐼𝐶) ∧ 𝑡 ∈ (𝑀𝐼𝑅)))) → (𝑡𝐷𝑡 ∈ (𝐵𝐼𝐶)))
8180ex 449 . . . . 5 (𝜑 → ((𝑡𝑃 ∧ (𝑡 ∈ (𝐵𝐼𝐶) ∧ 𝑡 ∈ (𝑀𝐼𝑅))) → (𝑡𝐷𝑡 ∈ (𝐵𝐼𝐶))))
8281reximdv2 3152 . . . 4 (𝜑 → (∃𝑡𝑃 (𝑡 ∈ (𝐵𝐼𝐶) ∧ 𝑡 ∈ (𝑀𝐼𝑅)) → ∃𝑡𝐷 𝑡 ∈ (𝐵𝐼𝐶)))
8348, 82mpd 15 . . 3 (𝜑 → ∃𝑡𝐷 𝑡 ∈ (𝐵𝐼𝐶))
8436, 37, 83jca31 558 . 2 (𝜑 → ((¬ 𝐵𝐷 ∧ ¬ 𝐶𝐷) ∧ ∃𝑡𝐷 𝑡 ∈ (𝐵𝐼𝐶)))
854, 30, 5, 31, 9, 32islnopp 25830 . 2 (𝜑 → (𝐵𝑂𝐶 ↔ ((¬ 𝐵𝐷 ∧ ¬ 𝐶𝐷) ∧ ∃𝑡𝐷 𝑡 ∈ (𝐵𝐼𝐶))))
8684, 85mpbird 247 1 (𝜑𝐵𝑂𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383   = wceq 1632  wcel 2139  wne 2932  wrex 3051  cdif 3712   class class class wbr 4804  {copab 4864  ran crn 5267  cfv 6049  (class class class)co 6813  Basecbs 16059  distcds 16152  TarskiGcstrkg 25528  Itvcitv 25534  LineGclng 25535  pInvGcmir 25746
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-om 7231  df-1st 7333  df-2nd 7334  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-1o 7729  df-oadd 7733  df-er 7911  df-pm 8026  df-en 8122  df-dom 8123  df-sdom 8124  df-fin 8125  df-card 8955  df-cda 9182  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-nn 11213  df-2 11271  df-3 11272  df-n0 11485  df-xnn0 11556  df-z 11570  df-uz 11880  df-fz 12520  df-fzo 12660  df-hash 13312  df-word 13485  df-concat 13487  df-s1 13488  df-s2 13793  df-s3 13794  df-trkgc 25546  df-trkgb 25547  df-trkgcb 25548  df-trkg 25551  df-cgrg 25605  df-mir 25747
This theorem is referenced by:  opphllem2  25839
  Copyright terms: Public domain W3C validator