MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oppgtmd Structured version   Visualization version   GIF version

Theorem oppgtmd 22102
Description: The opposite of a topological monoid is a topological monoid. (Contributed by Mario Carneiro, 19-Sep-2015.)
Hypothesis
Ref Expression
oppgtmd.1 𝑂 = (oppg𝐺)
Assertion
Ref Expression
oppgtmd (𝐺 ∈ TopMnd → 𝑂 ∈ TopMnd)

Proof of Theorem oppgtmd
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tmdmnd 22080 . . 3 (𝐺 ∈ TopMnd → 𝐺 ∈ Mnd)
2 oppgtmd.1 . . . 4 𝑂 = (oppg𝐺)
32oppgmnd 17984 . . 3 (𝐺 ∈ Mnd → 𝑂 ∈ Mnd)
41, 3syl 17 . 2 (𝐺 ∈ TopMnd → 𝑂 ∈ Mnd)
5 eqid 2760 . . . 4 (TopOpen‘𝐺) = (TopOpen‘𝐺)
6 eqid 2760 . . . 4 (Base‘𝐺) = (Base‘𝐺)
75, 6tmdtopon 22086 . . 3 (𝐺 ∈ TopMnd → (TopOpen‘𝐺) ∈ (TopOn‘(Base‘𝐺)))
82, 6oppgbas 17981 . . . 4 (Base‘𝐺) = (Base‘𝑂)
92, 5oppgtopn 17983 . . . 4 (TopOpen‘𝐺) = (TopOpen‘𝑂)
108, 9istps 20940 . . 3 (𝑂 ∈ TopSp ↔ (TopOpen‘𝐺) ∈ (TopOn‘(Base‘𝐺)))
117, 10sylibr 224 . 2 (𝐺 ∈ TopMnd → 𝑂 ∈ TopSp)
12 eqid 2760 . . 3 (+g𝐺) = (+g𝐺)
13 id 22 . . 3 (𝐺 ∈ TopMnd → 𝐺 ∈ TopMnd)
147, 7cnmpt2nd 21674 . . 3 (𝐺 ∈ TopMnd → (𝑥 ∈ (Base‘𝐺), 𝑦 ∈ (Base‘𝐺) ↦ 𝑦) ∈ (((TopOpen‘𝐺) ×t (TopOpen‘𝐺)) Cn (TopOpen‘𝐺)))
157, 7cnmpt1st 21673 . . 3 (𝐺 ∈ TopMnd → (𝑥 ∈ (Base‘𝐺), 𝑦 ∈ (Base‘𝐺) ↦ 𝑥) ∈ (((TopOpen‘𝐺) ×t (TopOpen‘𝐺)) Cn (TopOpen‘𝐺)))
165, 12, 13, 7, 7, 14, 15cnmpt2plusg 22093 . 2 (𝐺 ∈ TopMnd → (𝑥 ∈ (Base‘𝐺), 𝑦 ∈ (Base‘𝐺) ↦ (𝑦(+g𝐺)𝑥)) ∈ (((TopOpen‘𝐺) ×t (TopOpen‘𝐺)) Cn (TopOpen‘𝐺)))
17 eqid 2760 . . . . 5 (+g𝑂) = (+g𝑂)
18 eqid 2760 . . . . 5 (+𝑓𝑂) = (+𝑓𝑂)
198, 17, 18plusffval 17448 . . . 4 (+𝑓𝑂) = (𝑥 ∈ (Base‘𝐺), 𝑦 ∈ (Base‘𝐺) ↦ (𝑥(+g𝑂)𝑦))
2012, 2, 17oppgplus 17979 . . . . 5 (𝑥(+g𝑂)𝑦) = (𝑦(+g𝐺)𝑥)
216, 6, 20mpt2eq123i 6883 . . . 4 (𝑥 ∈ (Base‘𝐺), 𝑦 ∈ (Base‘𝐺) ↦ (𝑥(+g𝑂)𝑦)) = (𝑥 ∈ (Base‘𝐺), 𝑦 ∈ (Base‘𝐺) ↦ (𝑦(+g𝐺)𝑥))
2219, 21eqtr2i 2783 . . 3 (𝑥 ∈ (Base‘𝐺), 𝑦 ∈ (Base‘𝐺) ↦ (𝑦(+g𝐺)𝑥)) = (+𝑓𝑂)
2322, 9istmd 22079 . 2 (𝑂 ∈ TopMnd ↔ (𝑂 ∈ Mnd ∧ 𝑂 ∈ TopSp ∧ (𝑥 ∈ (Base‘𝐺), 𝑦 ∈ (Base‘𝐺) ↦ (𝑦(+g𝐺)𝑥)) ∈ (((TopOpen‘𝐺) ×t (TopOpen‘𝐺)) Cn (TopOpen‘𝐺))))
244, 11, 16, 23syl3anbrc 1429 1 (𝐺 ∈ TopMnd → 𝑂 ∈ TopMnd)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1632  wcel 2139  cfv 6049  (class class class)co 6813  cmpt2 6815  Basecbs 16059  +gcplusg 16143  TopOpenctopn 16284  +𝑓cplusf 17440  Mndcmnd 17495  oppgcoppg 17975  TopOnctopon 20917  TopSpctps 20938   Cn ccn 21230   ×t ctx 21565  TopMndctmd 22075
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-om 7231  df-1st 7333  df-2nd 7334  df-tpos 7521  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-er 7911  df-map 8025  df-en 8122  df-dom 8123  df-sdom 8124  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-nn 11213  df-2 11271  df-3 11272  df-4 11273  df-5 11274  df-6 11275  df-7 11276  df-8 11277  df-9 11278  df-ndx 16062  df-slot 16063  df-base 16065  df-sets 16066  df-plusg 16156  df-tset 16162  df-rest 16285  df-topn 16286  df-0g 16304  df-topgen 16306  df-plusf 17442  df-mgm 17443  df-sgrp 17485  df-mnd 17496  df-oppg 17976  df-top 20901  df-topon 20918  df-topsp 20939  df-bases 20952  df-cn 21233  df-tx 21567  df-tmd 22077
This theorem is referenced by:  oppgtgp  22103
  Copyright terms: Public domain W3C validator