![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > oppgsubg | Structured version Visualization version GIF version |
Description: Being a subgroup is a symmetric property. (Contributed by Mario Carneiro, 17-Sep-2015.) |
Ref | Expression |
---|---|
oppggic.o | ⊢ 𝑂 = (oppg‘𝐺) |
Ref | Expression |
---|---|
oppgsubg | ⊢ (SubGrp‘𝐺) = (SubGrp‘𝑂) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subgrcl 17807 | . . 3 ⊢ (𝑥 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp) | |
2 | subgrcl 17807 | . . . 4 ⊢ (𝑥 ∈ (SubGrp‘𝑂) → 𝑂 ∈ Grp) | |
3 | oppggic.o | . . . . 5 ⊢ 𝑂 = (oppg‘𝐺) | |
4 | 3 | oppggrpb 17995 | . . . 4 ⊢ (𝐺 ∈ Grp ↔ 𝑂 ∈ Grp) |
5 | 2, 4 | sylibr 224 | . . 3 ⊢ (𝑥 ∈ (SubGrp‘𝑂) → 𝐺 ∈ Grp) |
6 | 3 | oppgsubm 17999 | . . . . . . 7 ⊢ (SubMnd‘𝐺) = (SubMnd‘𝑂) |
7 | 6 | eleq2i 2842 | . . . . . 6 ⊢ (𝑥 ∈ (SubMnd‘𝐺) ↔ 𝑥 ∈ (SubMnd‘𝑂)) |
8 | 7 | a1i 11 | . . . . 5 ⊢ (𝐺 ∈ Grp → (𝑥 ∈ (SubMnd‘𝐺) ↔ 𝑥 ∈ (SubMnd‘𝑂))) |
9 | eqid 2771 | . . . . . . . . 9 ⊢ (invg‘𝐺) = (invg‘𝐺) | |
10 | 3, 9 | oppginv 17996 | . . . . . . . 8 ⊢ (𝐺 ∈ Grp → (invg‘𝐺) = (invg‘𝑂)) |
11 | 10 | fveq1d 6334 | . . . . . . 7 ⊢ (𝐺 ∈ Grp → ((invg‘𝐺)‘𝑦) = ((invg‘𝑂)‘𝑦)) |
12 | 11 | eleq1d 2835 | . . . . . 6 ⊢ (𝐺 ∈ Grp → (((invg‘𝐺)‘𝑦) ∈ 𝑥 ↔ ((invg‘𝑂)‘𝑦) ∈ 𝑥)) |
13 | 12 | ralbidv 3135 | . . . . 5 ⊢ (𝐺 ∈ Grp → (∀𝑦 ∈ 𝑥 ((invg‘𝐺)‘𝑦) ∈ 𝑥 ↔ ∀𝑦 ∈ 𝑥 ((invg‘𝑂)‘𝑦) ∈ 𝑥)) |
14 | 8, 13 | anbi12d 616 | . . . 4 ⊢ (𝐺 ∈ Grp → ((𝑥 ∈ (SubMnd‘𝐺) ∧ ∀𝑦 ∈ 𝑥 ((invg‘𝐺)‘𝑦) ∈ 𝑥) ↔ (𝑥 ∈ (SubMnd‘𝑂) ∧ ∀𝑦 ∈ 𝑥 ((invg‘𝑂)‘𝑦) ∈ 𝑥))) |
15 | 9 | issubg3 17820 | . . . 4 ⊢ (𝐺 ∈ Grp → (𝑥 ∈ (SubGrp‘𝐺) ↔ (𝑥 ∈ (SubMnd‘𝐺) ∧ ∀𝑦 ∈ 𝑥 ((invg‘𝐺)‘𝑦) ∈ 𝑥))) |
16 | eqid 2771 | . . . . . 6 ⊢ (invg‘𝑂) = (invg‘𝑂) | |
17 | 16 | issubg3 17820 | . . . . 5 ⊢ (𝑂 ∈ Grp → (𝑥 ∈ (SubGrp‘𝑂) ↔ (𝑥 ∈ (SubMnd‘𝑂) ∧ ∀𝑦 ∈ 𝑥 ((invg‘𝑂)‘𝑦) ∈ 𝑥))) |
18 | 4, 17 | sylbi 207 | . . . 4 ⊢ (𝐺 ∈ Grp → (𝑥 ∈ (SubGrp‘𝑂) ↔ (𝑥 ∈ (SubMnd‘𝑂) ∧ ∀𝑦 ∈ 𝑥 ((invg‘𝑂)‘𝑦) ∈ 𝑥))) |
19 | 14, 15, 18 | 3bitr4d 300 | . . 3 ⊢ (𝐺 ∈ Grp → (𝑥 ∈ (SubGrp‘𝐺) ↔ 𝑥 ∈ (SubGrp‘𝑂))) |
20 | 1, 5, 19 | pm5.21nii 367 | . 2 ⊢ (𝑥 ∈ (SubGrp‘𝐺) ↔ 𝑥 ∈ (SubGrp‘𝑂)) |
21 | 20 | eqriv 2768 | 1 ⊢ (SubGrp‘𝐺) = (SubGrp‘𝑂) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∧ wa 382 = wceq 1631 ∈ wcel 2145 ∀wral 3061 ‘cfv 6031 SubMndcsubmnd 17542 Grpcgrp 17630 invgcminusg 17631 SubGrpcsubg 17796 oppgcoppg 17982 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4904 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 ax-cnex 10194 ax-resscn 10195 ax-1cn 10196 ax-icn 10197 ax-addcl 10198 ax-addrcl 10199 ax-mulcl 10200 ax-mulrcl 10201 ax-mulcom 10202 ax-addass 10203 ax-mulass 10204 ax-distr 10205 ax-i2m1 10206 ax-1ne0 10207 ax-1rid 10208 ax-rnegex 10209 ax-rrecex 10210 ax-cnre 10211 ax-pre-lttri 10212 ax-pre-lttrn 10213 ax-pre-ltadd 10214 ax-pre-mulgt0 10215 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-tp 4321 df-op 4323 df-uni 4575 df-iun 4656 df-br 4787 df-opab 4847 df-mpt 4864 df-tr 4887 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-riota 6754 df-ov 6796 df-oprab 6797 df-mpt2 6798 df-om 7213 df-tpos 7504 df-wrecs 7559 df-recs 7621 df-rdg 7659 df-er 7896 df-en 8110 df-dom 8111 df-sdom 8112 df-pnf 10278 df-mnf 10279 df-xr 10280 df-ltxr 10281 df-le 10282 df-sub 10470 df-neg 10471 df-nn 11223 df-2 11281 df-ndx 16067 df-slot 16068 df-base 16070 df-sets 16071 df-ress 16072 df-plusg 16162 df-0g 16310 df-mgm 17450 df-sgrp 17492 df-mnd 17503 df-submnd 17544 df-grp 17633 df-minusg 17634 df-subg 17799 df-oppg 17983 |
This theorem is referenced by: lsmmod2 18296 lsmdisj2r 18305 |
Copyright terms: Public domain | W3C validator |