![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > oppginv | Structured version Visualization version GIF version |
Description: Inverses in a group are a symmetric notion. (Contributed by Stefan O'Rear, 26-Aug-2015.) |
Ref | Expression |
---|---|
oppgbas.1 | ⊢ 𝑂 = (oppg‘𝑅) |
oppginv.2 | ⊢ 𝐼 = (invg‘𝑅) |
Ref | Expression |
---|---|
oppginv | ⊢ (𝑅 ∈ Grp → 𝐼 = (invg‘𝑂)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2752 | . . . 4 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
2 | oppginv.2 | . . . 4 ⊢ 𝐼 = (invg‘𝑅) | |
3 | 1, 2 | grpinvf 17659 | . . 3 ⊢ (𝑅 ∈ Grp → 𝐼:(Base‘𝑅)⟶(Base‘𝑅)) |
4 | eqid 2752 | . . . . . 6 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
5 | oppgbas.1 | . . . . . 6 ⊢ 𝑂 = (oppg‘𝑅) | |
6 | eqid 2752 | . . . . . 6 ⊢ (+g‘𝑂) = (+g‘𝑂) | |
7 | 4, 5, 6 | oppgplus 17971 | . . . . 5 ⊢ ((𝐼‘𝑥)(+g‘𝑂)𝑥) = (𝑥(+g‘𝑅)(𝐼‘𝑥)) |
8 | eqid 2752 | . . . . . 6 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
9 | 1, 4, 8, 2 | grprinv 17662 | . . . . 5 ⊢ ((𝑅 ∈ Grp ∧ 𝑥 ∈ (Base‘𝑅)) → (𝑥(+g‘𝑅)(𝐼‘𝑥)) = (0g‘𝑅)) |
10 | 7, 9 | syl5eq 2798 | . . . 4 ⊢ ((𝑅 ∈ Grp ∧ 𝑥 ∈ (Base‘𝑅)) → ((𝐼‘𝑥)(+g‘𝑂)𝑥) = (0g‘𝑅)) |
11 | 10 | ralrimiva 3096 | . . 3 ⊢ (𝑅 ∈ Grp → ∀𝑥 ∈ (Base‘𝑅)((𝐼‘𝑥)(+g‘𝑂)𝑥) = (0g‘𝑅)) |
12 | 5 | oppggrp 17979 | . . . 4 ⊢ (𝑅 ∈ Grp → 𝑂 ∈ Grp) |
13 | 5, 1 | oppgbas 17973 | . . . . 5 ⊢ (Base‘𝑅) = (Base‘𝑂) |
14 | 5, 8 | oppgid 17978 | . . . . 5 ⊢ (0g‘𝑅) = (0g‘𝑂) |
15 | eqid 2752 | . . . . 5 ⊢ (invg‘𝑂) = (invg‘𝑂) | |
16 | 13, 6, 14, 15 | isgrpinv 17665 | . . . 4 ⊢ (𝑂 ∈ Grp → ((𝐼:(Base‘𝑅)⟶(Base‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)((𝐼‘𝑥)(+g‘𝑂)𝑥) = (0g‘𝑅)) ↔ (invg‘𝑂) = 𝐼)) |
17 | 12, 16 | syl 17 | . . 3 ⊢ (𝑅 ∈ Grp → ((𝐼:(Base‘𝑅)⟶(Base‘𝑅) ∧ ∀𝑥 ∈ (Base‘𝑅)((𝐼‘𝑥)(+g‘𝑂)𝑥) = (0g‘𝑅)) ↔ (invg‘𝑂) = 𝐼)) |
18 | 3, 11, 17 | mpbi2and 994 | . 2 ⊢ (𝑅 ∈ Grp → (invg‘𝑂) = 𝐼) |
19 | 18 | eqcomd 2758 | 1 ⊢ (𝑅 ∈ Grp → 𝐼 = (invg‘𝑂)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1624 ∈ wcel 2131 ∀wral 3042 ⟶wf 6037 ‘cfv 6041 (class class class)co 6805 Basecbs 16051 +gcplusg 16135 0gc0g 16294 Grpcgrp 17615 invgcminusg 17616 oppgcoppg 17967 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1863 ax-4 1878 ax-5 1980 ax-6 2046 ax-7 2082 ax-8 2133 ax-9 2140 ax-10 2160 ax-11 2175 ax-12 2188 ax-13 2383 ax-ext 2732 ax-rep 4915 ax-sep 4925 ax-nul 4933 ax-pow 4984 ax-pr 5047 ax-un 7106 ax-cnex 10176 ax-resscn 10177 ax-1cn 10178 ax-icn 10179 ax-addcl 10180 ax-addrcl 10181 ax-mulcl 10182 ax-mulrcl 10183 ax-mulcom 10184 ax-addass 10185 ax-mulass 10186 ax-distr 10187 ax-i2m1 10188 ax-1ne0 10189 ax-1rid 10190 ax-rnegex 10191 ax-rrecex 10192 ax-cnre 10193 ax-pre-lttri 10194 ax-pre-lttrn 10195 ax-pre-ltadd 10196 ax-pre-mulgt0 10197 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1627 df-ex 1846 df-nf 1851 df-sb 2039 df-eu 2603 df-mo 2604 df-clab 2739 df-cleq 2745 df-clel 2748 df-nfc 2883 df-ne 2925 df-nel 3028 df-ral 3047 df-rex 3048 df-reu 3049 df-rmo 3050 df-rab 3051 df-v 3334 df-sbc 3569 df-csb 3667 df-dif 3710 df-un 3712 df-in 3714 df-ss 3721 df-pss 3723 df-nul 4051 df-if 4223 df-pw 4296 df-sn 4314 df-pr 4316 df-tp 4318 df-op 4320 df-uni 4581 df-iun 4666 df-br 4797 df-opab 4857 df-mpt 4874 df-tr 4897 df-id 5166 df-eprel 5171 df-po 5179 df-so 5180 df-fr 5217 df-we 5219 df-xp 5264 df-rel 5265 df-cnv 5266 df-co 5267 df-dm 5268 df-rn 5269 df-res 5270 df-ima 5271 df-pred 5833 df-ord 5879 df-on 5880 df-lim 5881 df-suc 5882 df-iota 6004 df-fun 6043 df-fn 6044 df-f 6045 df-f1 6046 df-fo 6047 df-f1o 6048 df-fv 6049 df-riota 6766 df-ov 6808 df-oprab 6809 df-mpt2 6810 df-om 7223 df-tpos 7513 df-wrecs 7568 df-recs 7629 df-rdg 7667 df-er 7903 df-en 8114 df-dom 8115 df-sdom 8116 df-pnf 10260 df-mnf 10261 df-xr 10262 df-ltxr 10263 df-le 10264 df-sub 10452 df-neg 10453 df-nn 11205 df-2 11263 df-ndx 16054 df-slot 16055 df-base 16057 df-sets 16058 df-plusg 16148 df-0g 16296 df-mgm 17435 df-sgrp 17477 df-mnd 17488 df-grp 17618 df-minusg 17619 df-oppg 17968 |
This theorem is referenced by: oppgsubg 17985 oppgtgp 22095 tgpconncomp 22109 |
Copyright terms: Public domain | W3C validator |