MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oppggrp Structured version   Visualization version   GIF version

Theorem oppggrp 17979
Description: The opposite of a group is a group. (Contributed by Stefan O'Rear, 26-Aug-2015.)
Hypothesis
Ref Expression
oppgbas.1 𝑂 = (oppg𝑅)
Assertion
Ref Expression
oppggrp (𝑅 ∈ Grp → 𝑂 ∈ Grp)

Proof of Theorem oppggrp
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 oppgbas.1 . . . 4 𝑂 = (oppg𝑅)
2 eqid 2752 . . . 4 (Base‘𝑅) = (Base‘𝑅)
31, 2oppgbas 17973 . . 3 (Base‘𝑅) = (Base‘𝑂)
43a1i 11 . 2 (𝑅 ∈ Grp → (Base‘𝑅) = (Base‘𝑂))
5 eqidd 2753 . 2 (𝑅 ∈ Grp → (+g𝑂) = (+g𝑂))
6 eqid 2752 . . . 4 (0g𝑅) = (0g𝑅)
71, 6oppgid 17978 . . 3 (0g𝑅) = (0g𝑂)
87a1i 11 . 2 (𝑅 ∈ Grp → (0g𝑅) = (0g𝑂))
9 grpmnd 17622 . . 3 (𝑅 ∈ Grp → 𝑅 ∈ Mnd)
101oppgmnd 17976 . . 3 (𝑅 ∈ Mnd → 𝑂 ∈ Mnd)
119, 10syl 17 . 2 (𝑅 ∈ Grp → 𝑂 ∈ Mnd)
12 eqid 2752 . . 3 (invg𝑅) = (invg𝑅)
132, 12grpinvcl 17660 . 2 ((𝑅 ∈ Grp ∧ 𝑥 ∈ (Base‘𝑅)) → ((invg𝑅)‘𝑥) ∈ (Base‘𝑅))
14 eqid 2752 . . . 4 (+g𝑅) = (+g𝑅)
15 eqid 2752 . . . 4 (+g𝑂) = (+g𝑂)
1614, 1, 15oppgplus 17971 . . 3 (((invg𝑅)‘𝑥)(+g𝑂)𝑥) = (𝑥(+g𝑅)((invg𝑅)‘𝑥))
172, 14, 6, 12grprinv 17662 . . 3 ((𝑅 ∈ Grp ∧ 𝑥 ∈ (Base‘𝑅)) → (𝑥(+g𝑅)((invg𝑅)‘𝑥)) = (0g𝑅))
1816, 17syl5eq 2798 . 2 ((𝑅 ∈ Grp ∧ 𝑥 ∈ (Base‘𝑅)) → (((invg𝑅)‘𝑥)(+g𝑂)𝑥) = (0g𝑅))
194, 5, 8, 11, 13, 18isgrpd2 17635 1 (𝑅 ∈ Grp → 𝑂 ∈ Grp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1624  wcel 2131  cfv 6041  (class class class)co 6805  Basecbs 16051  +gcplusg 16135  0gc0g 16294  Mndcmnd 17487  Grpcgrp 17615  invgcminusg 17616  oppgcoppg 17967
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1863  ax-4 1878  ax-5 1980  ax-6 2046  ax-7 2082  ax-8 2133  ax-9 2140  ax-10 2160  ax-11 2175  ax-12 2188  ax-13 2383  ax-ext 2732  ax-rep 4915  ax-sep 4925  ax-nul 4933  ax-pow 4984  ax-pr 5047  ax-un 7106  ax-cnex 10176  ax-resscn 10177  ax-1cn 10178  ax-icn 10179  ax-addcl 10180  ax-addrcl 10181  ax-mulcl 10182  ax-mulrcl 10183  ax-mulcom 10184  ax-addass 10185  ax-mulass 10186  ax-distr 10187  ax-i2m1 10188  ax-1ne0 10189  ax-1rid 10190  ax-rnegex 10191  ax-rrecex 10192  ax-cnre 10193  ax-pre-lttri 10194  ax-pre-lttrn 10195  ax-pre-ltadd 10196  ax-pre-mulgt0 10197
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1627  df-ex 1846  df-nf 1851  df-sb 2039  df-eu 2603  df-mo 2604  df-clab 2739  df-cleq 2745  df-clel 2748  df-nfc 2883  df-ne 2925  df-nel 3028  df-ral 3047  df-rex 3048  df-reu 3049  df-rmo 3050  df-rab 3051  df-v 3334  df-sbc 3569  df-csb 3667  df-dif 3710  df-un 3712  df-in 3714  df-ss 3721  df-pss 3723  df-nul 4051  df-if 4223  df-pw 4296  df-sn 4314  df-pr 4316  df-tp 4318  df-op 4320  df-uni 4581  df-iun 4666  df-br 4797  df-opab 4857  df-mpt 4874  df-tr 4897  df-id 5166  df-eprel 5171  df-po 5179  df-so 5180  df-fr 5217  df-we 5219  df-xp 5264  df-rel 5265  df-cnv 5266  df-co 5267  df-dm 5268  df-rn 5269  df-res 5270  df-ima 5271  df-pred 5833  df-ord 5879  df-on 5880  df-lim 5881  df-suc 5882  df-iota 6004  df-fun 6043  df-fn 6044  df-f 6045  df-f1 6046  df-fo 6047  df-f1o 6048  df-fv 6049  df-riota 6766  df-ov 6808  df-oprab 6809  df-mpt2 6810  df-om 7223  df-tpos 7513  df-wrecs 7568  df-recs 7629  df-rdg 7667  df-er 7903  df-en 8114  df-dom 8115  df-sdom 8116  df-pnf 10260  df-mnf 10261  df-xr 10262  df-ltxr 10263  df-le 10264  df-sub 10452  df-neg 10453  df-nn 11205  df-2 11263  df-ndx 16054  df-slot 16055  df-base 16057  df-sets 16058  df-plusg 16148  df-0g 16296  df-mgm 17435  df-sgrp 17477  df-mnd 17488  df-grp 17618  df-minusg 17619  df-oppg 17968
This theorem is referenced by:  oppggrpb  17980  oppginv  17981  invoppggim  17982  oppgtgp  22095
  Copyright terms: Public domain W3C validator