MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oppcsect Structured version   Visualization version   GIF version

Theorem oppcsect 16659
Description: A section in the opposite category. (Contributed by Mario Carneiro, 3-Jan-2017.)
Hypotheses
Ref Expression
oppcsect.b 𝐵 = (Base‘𝐶)
oppcsect.o 𝑂 = (oppCat‘𝐶)
oppcsect.c (𝜑𝐶 ∈ Cat)
oppcsect.x (𝜑𝑋𝐵)
oppcsect.y (𝜑𝑌𝐵)
oppcsect.s 𝑆 = (Sect‘𝐶)
oppcsect.t 𝑇 = (Sect‘𝑂)
Assertion
Ref Expression
oppcsect (𝜑 → (𝐹(𝑋𝑇𝑌)𝐺𝐺(𝑋𝑆𝑌)𝐹))

Proof of Theorem oppcsect
StepHypRef Expression
1 oppcsect.b . . . . . 6 𝐵 = (Base‘𝐶)
2 eqid 2760 . . . . . 6 (comp‘𝐶) = (comp‘𝐶)
3 oppcsect.o . . . . . 6 𝑂 = (oppCat‘𝐶)
4 oppcsect.x . . . . . . 7 (𝜑𝑋𝐵)
54adantr 472 . . . . . 6 ((𝜑 ∧ (𝐺 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ 𝐹 ∈ (𝑌(Hom ‘𝐶)𝑋))) → 𝑋𝐵)
6 oppcsect.y . . . . . . 7 (𝜑𝑌𝐵)
76adantr 472 . . . . . 6 ((𝜑 ∧ (𝐺 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ 𝐹 ∈ (𝑌(Hom ‘𝐶)𝑋))) → 𝑌𝐵)
81, 2, 3, 5, 7, 5oppcco 16598 . . . . 5 ((𝜑 ∧ (𝐺 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ 𝐹 ∈ (𝑌(Hom ‘𝐶)𝑋))) → (𝐺(⟨𝑋, 𝑌⟩(comp‘𝑂)𝑋)𝐹) = (𝐹(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐺))
9 oppcsect.c . . . . . . . 8 (𝜑𝐶 ∈ Cat)
109adantr 472 . . . . . . 7 ((𝜑 ∧ (𝐺 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ 𝐹 ∈ (𝑌(Hom ‘𝐶)𝑋))) → 𝐶 ∈ Cat)
11 eqid 2760 . . . . . . . 8 (Id‘𝐶) = (Id‘𝐶)
123, 11oppcid 16602 . . . . . . 7 (𝐶 ∈ Cat → (Id‘𝑂) = (Id‘𝐶))
1310, 12syl 17 . . . . . 6 ((𝜑 ∧ (𝐺 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ 𝐹 ∈ (𝑌(Hom ‘𝐶)𝑋))) → (Id‘𝑂) = (Id‘𝐶))
1413fveq1d 6355 . . . . 5 ((𝜑 ∧ (𝐺 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ 𝐹 ∈ (𝑌(Hom ‘𝐶)𝑋))) → ((Id‘𝑂)‘𝑋) = ((Id‘𝐶)‘𝑋))
158, 14eqeq12d 2775 . . . 4 ((𝜑 ∧ (𝐺 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ 𝐹 ∈ (𝑌(Hom ‘𝐶)𝑋))) → ((𝐺(⟨𝑋, 𝑌⟩(comp‘𝑂)𝑋)𝐹) = ((Id‘𝑂)‘𝑋) ↔ (𝐹(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐺) = ((Id‘𝐶)‘𝑋)))
1615pm5.32da 676 . . 3 (𝜑 → (((𝐺 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ 𝐹 ∈ (𝑌(Hom ‘𝐶)𝑋)) ∧ (𝐺(⟨𝑋, 𝑌⟩(comp‘𝑂)𝑋)𝐹) = ((Id‘𝑂)‘𝑋)) ↔ ((𝐺 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ 𝐹 ∈ (𝑌(Hom ‘𝐶)𝑋)) ∧ (𝐹(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐺) = ((Id‘𝐶)‘𝑋))))
17 df-3an 1074 . . . 4 ((𝐹 ∈ (𝑋(Hom ‘𝑂)𝑌) ∧ 𝐺 ∈ (𝑌(Hom ‘𝑂)𝑋) ∧ (𝐺(⟨𝑋, 𝑌⟩(comp‘𝑂)𝑋)𝐹) = ((Id‘𝑂)‘𝑋)) ↔ ((𝐹 ∈ (𝑋(Hom ‘𝑂)𝑌) ∧ 𝐺 ∈ (𝑌(Hom ‘𝑂)𝑋)) ∧ (𝐺(⟨𝑋, 𝑌⟩(comp‘𝑂)𝑋)𝐹) = ((Id‘𝑂)‘𝑋)))
18 eqid 2760 . . . . . . . 8 (Hom ‘𝐶) = (Hom ‘𝐶)
1918, 3oppchom 16596 . . . . . . 7 (𝑋(Hom ‘𝑂)𝑌) = (𝑌(Hom ‘𝐶)𝑋)
2019eleq2i 2831 . . . . . 6 (𝐹 ∈ (𝑋(Hom ‘𝑂)𝑌) ↔ 𝐹 ∈ (𝑌(Hom ‘𝐶)𝑋))
2118, 3oppchom 16596 . . . . . . 7 (𝑌(Hom ‘𝑂)𝑋) = (𝑋(Hom ‘𝐶)𝑌)
2221eleq2i 2831 . . . . . 6 (𝐺 ∈ (𝑌(Hom ‘𝑂)𝑋) ↔ 𝐺 ∈ (𝑋(Hom ‘𝐶)𝑌))
2320, 22anbi12ci 736 . . . . 5 ((𝐹 ∈ (𝑋(Hom ‘𝑂)𝑌) ∧ 𝐺 ∈ (𝑌(Hom ‘𝑂)𝑋)) ↔ (𝐺 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ 𝐹 ∈ (𝑌(Hom ‘𝐶)𝑋)))
2423anbi1i 733 . . . 4 (((𝐹 ∈ (𝑋(Hom ‘𝑂)𝑌) ∧ 𝐺 ∈ (𝑌(Hom ‘𝑂)𝑋)) ∧ (𝐺(⟨𝑋, 𝑌⟩(comp‘𝑂)𝑋)𝐹) = ((Id‘𝑂)‘𝑋)) ↔ ((𝐺 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ 𝐹 ∈ (𝑌(Hom ‘𝐶)𝑋)) ∧ (𝐺(⟨𝑋, 𝑌⟩(comp‘𝑂)𝑋)𝐹) = ((Id‘𝑂)‘𝑋)))
2517, 24bitri 264 . . 3 ((𝐹 ∈ (𝑋(Hom ‘𝑂)𝑌) ∧ 𝐺 ∈ (𝑌(Hom ‘𝑂)𝑋) ∧ (𝐺(⟨𝑋, 𝑌⟩(comp‘𝑂)𝑋)𝐹) = ((Id‘𝑂)‘𝑋)) ↔ ((𝐺 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ 𝐹 ∈ (𝑌(Hom ‘𝐶)𝑋)) ∧ (𝐺(⟨𝑋, 𝑌⟩(comp‘𝑂)𝑋)𝐹) = ((Id‘𝑂)‘𝑋)))
26 df-3an 1074 . . 3 ((𝐺 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ 𝐹 ∈ (𝑌(Hom ‘𝐶)𝑋) ∧ (𝐹(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐺) = ((Id‘𝐶)‘𝑋)) ↔ ((𝐺 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ 𝐹 ∈ (𝑌(Hom ‘𝐶)𝑋)) ∧ (𝐹(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐺) = ((Id‘𝐶)‘𝑋)))
2716, 25, 263bitr4g 303 . 2 (𝜑 → ((𝐹 ∈ (𝑋(Hom ‘𝑂)𝑌) ∧ 𝐺 ∈ (𝑌(Hom ‘𝑂)𝑋) ∧ (𝐺(⟨𝑋, 𝑌⟩(comp‘𝑂)𝑋)𝐹) = ((Id‘𝑂)‘𝑋)) ↔ (𝐺 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ 𝐹 ∈ (𝑌(Hom ‘𝐶)𝑋) ∧ (𝐹(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐺) = ((Id‘𝐶)‘𝑋))))
283, 1oppcbas 16599 . . 3 𝐵 = (Base‘𝑂)
29 eqid 2760 . . 3 (Hom ‘𝑂) = (Hom ‘𝑂)
30 eqid 2760 . . 3 (comp‘𝑂) = (comp‘𝑂)
31 eqid 2760 . . 3 (Id‘𝑂) = (Id‘𝑂)
32 oppcsect.t . . 3 𝑇 = (Sect‘𝑂)
333oppccat 16603 . . . 4 (𝐶 ∈ Cat → 𝑂 ∈ Cat)
349, 33syl 17 . . 3 (𝜑𝑂 ∈ Cat)
3528, 29, 30, 31, 32, 34, 4, 6issect 16634 . 2 (𝜑 → (𝐹(𝑋𝑇𝑌)𝐺 ↔ (𝐹 ∈ (𝑋(Hom ‘𝑂)𝑌) ∧ 𝐺 ∈ (𝑌(Hom ‘𝑂)𝑋) ∧ (𝐺(⟨𝑋, 𝑌⟩(comp‘𝑂)𝑋)𝐹) = ((Id‘𝑂)‘𝑋))))
36 oppcsect.s . . 3 𝑆 = (Sect‘𝐶)
371, 18, 2, 11, 36, 9, 4, 6issect 16634 . 2 (𝜑 → (𝐺(𝑋𝑆𝑌)𝐹 ↔ (𝐺 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ 𝐹 ∈ (𝑌(Hom ‘𝐶)𝑋) ∧ (𝐹(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐺) = ((Id‘𝐶)‘𝑋))))
3827, 35, 373bitr4d 300 1 (𝜑 → (𝐹(𝑋𝑇𝑌)𝐺𝐺(𝑋𝑆𝑌)𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1072   = wceq 1632  wcel 2139  cop 4327   class class class wbr 4804  cfv 6049  (class class class)co 6814  Basecbs 16079  Hom chom 16174  compcco 16175  Catccat 16546  Idccid 16547  oppCatcoppc 16592  Sectcsect 16625
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-om 7232  df-1st 7334  df-2nd 7335  df-tpos 7522  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-er 7913  df-en 8124  df-dom 8125  df-sdom 8126  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-nn 11233  df-2 11291  df-3 11292  df-4 11293  df-5 11294  df-6 11295  df-7 11296  df-8 11297  df-9 11298  df-n0 11505  df-z 11590  df-dec 11706  df-ndx 16082  df-slot 16083  df-base 16085  df-sets 16086  df-hom 16188  df-cco 16189  df-cat 16550  df-cid 16551  df-oppc 16593  df-sect 16628
This theorem is referenced by:  oppcsect2  16660  sectepi  16665  episect  16666
  Copyright terms: Public domain W3C validator