![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > oppcinv | Structured version Visualization version GIF version |
Description: An inverse in the opposite category. (Contributed by Mario Carneiro, 3-Jan-2017.) |
Ref | Expression |
---|---|
oppcsect.b | ⊢ 𝐵 = (Base‘𝐶) |
oppcsect.o | ⊢ 𝑂 = (oppCat‘𝐶) |
oppcsect.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
oppcsect.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
oppcsect.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
oppcinv.s | ⊢ 𝐼 = (Inv‘𝐶) |
oppcinv.t | ⊢ 𝐽 = (Inv‘𝑂) |
Ref | Expression |
---|---|
oppcinv | ⊢ (𝜑 → (𝑋𝐽𝑌) = (𝑌𝐼𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | incom 3956 | . . 3 ⊢ ((𝑋(Sect‘𝑂)𝑌) ∩ ◡(𝑌(Sect‘𝑂)𝑋)) = (◡(𝑌(Sect‘𝑂)𝑋) ∩ (𝑋(Sect‘𝑂)𝑌)) | |
2 | oppcsect.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝐶) | |
3 | oppcsect.o | . . . . . . 7 ⊢ 𝑂 = (oppCat‘𝐶) | |
4 | oppcsect.c | . . . . . . 7 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
5 | oppcsect.y | . . . . . . 7 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
6 | oppcsect.x | . . . . . . 7 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
7 | eqid 2771 | . . . . . . 7 ⊢ (Sect‘𝐶) = (Sect‘𝐶) | |
8 | eqid 2771 | . . . . . . 7 ⊢ (Sect‘𝑂) = (Sect‘𝑂) | |
9 | 2, 3, 4, 5, 6, 7, 8 | oppcsect2 16646 | . . . . . 6 ⊢ (𝜑 → (𝑌(Sect‘𝑂)𝑋) = ◡(𝑌(Sect‘𝐶)𝑋)) |
10 | 9 | cnveqd 5435 | . . . . 5 ⊢ (𝜑 → ◡(𝑌(Sect‘𝑂)𝑋) = ◡◡(𝑌(Sect‘𝐶)𝑋)) |
11 | eqid 2771 | . . . . . . . 8 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
12 | eqid 2771 | . . . . . . . 8 ⊢ (comp‘𝐶) = (comp‘𝐶) | |
13 | eqid 2771 | . . . . . . . 8 ⊢ (Id‘𝐶) = (Id‘𝐶) | |
14 | 2, 11, 12, 13, 7, 4, 5, 6 | sectss 16619 | . . . . . . 7 ⊢ (𝜑 → (𝑌(Sect‘𝐶)𝑋) ⊆ ((𝑌(Hom ‘𝐶)𝑋) × (𝑋(Hom ‘𝐶)𝑌))) |
15 | relxp 5267 | . . . . . . 7 ⊢ Rel ((𝑌(Hom ‘𝐶)𝑋) × (𝑋(Hom ‘𝐶)𝑌)) | |
16 | relss 5345 | . . . . . . 7 ⊢ ((𝑌(Sect‘𝐶)𝑋) ⊆ ((𝑌(Hom ‘𝐶)𝑋) × (𝑋(Hom ‘𝐶)𝑌)) → (Rel ((𝑌(Hom ‘𝐶)𝑋) × (𝑋(Hom ‘𝐶)𝑌)) → Rel (𝑌(Sect‘𝐶)𝑋))) | |
17 | 14, 15, 16 | mpisyl 21 | . . . . . 6 ⊢ (𝜑 → Rel (𝑌(Sect‘𝐶)𝑋)) |
18 | dfrel2 5723 | . . . . . 6 ⊢ (Rel (𝑌(Sect‘𝐶)𝑋) ↔ ◡◡(𝑌(Sect‘𝐶)𝑋) = (𝑌(Sect‘𝐶)𝑋)) | |
19 | 17, 18 | sylib 208 | . . . . 5 ⊢ (𝜑 → ◡◡(𝑌(Sect‘𝐶)𝑋) = (𝑌(Sect‘𝐶)𝑋)) |
20 | 10, 19 | eqtrd 2805 | . . . 4 ⊢ (𝜑 → ◡(𝑌(Sect‘𝑂)𝑋) = (𝑌(Sect‘𝐶)𝑋)) |
21 | 2, 3, 4, 6, 5, 7, 8 | oppcsect2 16646 | . . . 4 ⊢ (𝜑 → (𝑋(Sect‘𝑂)𝑌) = ◡(𝑋(Sect‘𝐶)𝑌)) |
22 | 20, 21 | ineq12d 3966 | . . 3 ⊢ (𝜑 → (◡(𝑌(Sect‘𝑂)𝑋) ∩ (𝑋(Sect‘𝑂)𝑌)) = ((𝑌(Sect‘𝐶)𝑋) ∩ ◡(𝑋(Sect‘𝐶)𝑌))) |
23 | 1, 22 | syl5eq 2817 | . 2 ⊢ (𝜑 → ((𝑋(Sect‘𝑂)𝑌) ∩ ◡(𝑌(Sect‘𝑂)𝑋)) = ((𝑌(Sect‘𝐶)𝑋) ∩ ◡(𝑋(Sect‘𝐶)𝑌))) |
24 | 3, 2 | oppcbas 16585 | . . 3 ⊢ 𝐵 = (Base‘𝑂) |
25 | oppcinv.t | . . 3 ⊢ 𝐽 = (Inv‘𝑂) | |
26 | 3 | oppccat 16589 | . . . 4 ⊢ (𝐶 ∈ Cat → 𝑂 ∈ Cat) |
27 | 4, 26 | syl 17 | . . 3 ⊢ (𝜑 → 𝑂 ∈ Cat) |
28 | 24, 25, 27, 6, 5, 8 | invfval 16626 | . 2 ⊢ (𝜑 → (𝑋𝐽𝑌) = ((𝑋(Sect‘𝑂)𝑌) ∩ ◡(𝑌(Sect‘𝑂)𝑋))) |
29 | oppcinv.s | . . 3 ⊢ 𝐼 = (Inv‘𝐶) | |
30 | 2, 29, 4, 5, 6, 7 | invfval 16626 | . 2 ⊢ (𝜑 → (𝑌𝐼𝑋) = ((𝑌(Sect‘𝐶)𝑋) ∩ ◡(𝑋(Sect‘𝐶)𝑌))) |
31 | 23, 28, 30 | 3eqtr4d 2815 | 1 ⊢ (𝜑 → (𝑋𝐽𝑌) = (𝑌𝐼𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1631 ∈ wcel 2145 ∩ cin 3722 ⊆ wss 3723 × cxp 5248 ◡ccnv 5249 Rel wrel 5255 ‘cfv 6030 (class class class)co 6796 Basecbs 16064 Hom chom 16160 compcco 16161 Catccat 16532 Idccid 16533 oppCatcoppc 16578 Sectcsect 16611 Invcinv 16612 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4905 ax-sep 4916 ax-nul 4924 ax-pow 4975 ax-pr 5035 ax-un 7100 ax-cnex 10198 ax-resscn 10199 ax-1cn 10200 ax-icn 10201 ax-addcl 10202 ax-addrcl 10203 ax-mulcl 10204 ax-mulrcl 10205 ax-mulcom 10206 ax-addass 10207 ax-mulass 10208 ax-distr 10209 ax-i2m1 10210 ax-1ne0 10211 ax-1rid 10212 ax-rnegex 10213 ax-rrecex 10214 ax-cnre 10215 ax-pre-lttri 10216 ax-pre-lttrn 10217 ax-pre-ltadd 10218 ax-pre-mulgt0 10219 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4227 df-pw 4300 df-sn 4318 df-pr 4320 df-tp 4322 df-op 4324 df-uni 4576 df-iun 4657 df-br 4788 df-opab 4848 df-mpt 4865 df-tr 4888 df-id 5158 df-eprel 5163 df-po 5171 df-so 5172 df-fr 5209 df-we 5211 df-xp 5256 df-rel 5257 df-cnv 5258 df-co 5259 df-dm 5260 df-rn 5261 df-res 5262 df-ima 5263 df-pred 5822 df-ord 5868 df-on 5869 df-lim 5870 df-suc 5871 df-iota 5993 df-fun 6032 df-fn 6033 df-f 6034 df-f1 6035 df-fo 6036 df-f1o 6037 df-fv 6038 df-riota 6757 df-ov 6799 df-oprab 6800 df-mpt2 6801 df-om 7217 df-1st 7319 df-2nd 7320 df-tpos 7508 df-wrecs 7563 df-recs 7625 df-rdg 7663 df-er 7900 df-en 8114 df-dom 8115 df-sdom 8116 df-pnf 10282 df-mnf 10283 df-xr 10284 df-ltxr 10285 df-le 10286 df-sub 10474 df-neg 10475 df-nn 11227 df-2 11285 df-3 11286 df-4 11287 df-5 11288 df-6 11289 df-7 11290 df-8 11291 df-9 11292 df-n0 11500 df-z 11585 df-dec 11701 df-ndx 16067 df-slot 16068 df-base 16070 df-sets 16071 df-hom 16174 df-cco 16175 df-cat 16536 df-cid 16537 df-oppc 16579 df-sect 16614 df-inv 16615 |
This theorem is referenced by: oppciso 16648 episect 16652 |
Copyright terms: Public domain | W3C validator |