![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > oppccat | Structured version Visualization version GIF version |
Description: An opposite category is a category. (Contributed by Mario Carneiro, 2-Jan-2017.) |
Ref | Expression |
---|---|
oppcbas.1 | ⊢ 𝑂 = (oppCat‘𝐶) |
Ref | Expression |
---|---|
oppccat | ⊢ (𝐶 ∈ Cat → 𝑂 ∈ Cat) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oppcbas.1 | . . 3 ⊢ 𝑂 = (oppCat‘𝐶) | |
2 | 1 | oppccatid 16592 | . 2 ⊢ (𝐶 ∈ Cat → (𝑂 ∈ Cat ∧ (Id‘𝑂) = (Id‘𝐶))) |
3 | 2 | simpld 478 | 1 ⊢ (𝐶 ∈ Cat → 𝑂 ∈ Cat) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1629 ∈ wcel 2143 ‘cfv 6030 Catccat 16538 Idccid 16539 oppCatcoppc 16584 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1868 ax-4 1883 ax-5 1989 ax-6 2055 ax-7 2091 ax-8 2145 ax-9 2152 ax-10 2172 ax-11 2188 ax-12 2201 ax-13 2406 ax-ext 2749 ax-rep 4901 ax-sep 4911 ax-nul 4919 ax-pow 4970 ax-pr 5033 ax-un 7094 ax-cnex 10192 ax-resscn 10193 ax-1cn 10194 ax-icn 10195 ax-addcl 10196 ax-addrcl 10197 ax-mulcl 10198 ax-mulrcl 10199 ax-mulcom 10200 ax-addass 10201 ax-mulass 10202 ax-distr 10203 ax-i2m1 10204 ax-1ne0 10205 ax-1rid 10206 ax-rnegex 10207 ax-rrecex 10208 ax-cnre 10209 ax-pre-lttri 10210 ax-pre-lttrn 10211 ax-pre-ltadd 10212 ax-pre-mulgt0 10213 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1070 df-3an 1071 df-tru 1632 df-ex 1851 df-nf 1856 df-sb 2048 df-eu 2620 df-mo 2621 df-clab 2756 df-cleq 2762 df-clel 2765 df-nfc 2900 df-ne 2942 df-nel 3045 df-ral 3064 df-rex 3065 df-reu 3066 df-rmo 3067 df-rab 3068 df-v 3350 df-sbc 3585 df-csb 3680 df-dif 3723 df-un 3725 df-in 3727 df-ss 3734 df-pss 3736 df-nul 4061 df-if 4223 df-pw 4296 df-sn 4314 df-pr 4316 df-tp 4318 df-op 4320 df-uni 4572 df-iun 4653 df-br 4784 df-opab 4844 df-mpt 4861 df-tr 4884 df-id 5156 df-eprel 5161 df-po 5169 df-so 5170 df-fr 5207 df-we 5209 df-xp 5254 df-rel 5255 df-cnv 5256 df-co 5257 df-dm 5258 df-rn 5259 df-res 5260 df-ima 5261 df-pred 5822 df-ord 5868 df-on 5869 df-lim 5870 df-suc 5871 df-iota 5993 df-fun 6032 df-fn 6033 df-f 6034 df-f1 6035 df-fo 6036 df-f1o 6037 df-fv 6038 df-riota 6752 df-ov 6794 df-oprab 6795 df-mpt2 6796 df-om 7211 df-1st 7313 df-2nd 7314 df-tpos 7502 df-wrecs 7557 df-recs 7619 df-rdg 7657 df-er 7894 df-en 8108 df-dom 8109 df-sdom 8110 df-pnf 10276 df-mnf 10277 df-xr 10278 df-ltxr 10279 df-le 10280 df-sub 10468 df-neg 10469 df-nn 11221 df-2 11279 df-3 11280 df-4 11281 df-5 11282 df-6 11283 df-7 11284 df-8 11285 df-9 11286 df-n0 11493 df-z 11578 df-dec 11694 df-ndx 16073 df-slot 16074 df-base 16076 df-sets 16077 df-hom 16180 df-cco 16181 df-cat 16542 df-cid 16543 df-oppc 16585 |
This theorem is referenced by: oppcepi 16612 isepi 16613 epii 16616 oppcsect 16651 oppcsect2 16652 oppcinv 16653 oppciso 16654 sectepi 16657 episect 16658 funcoppc 16748 catcoppccl 16971 hofcl 17113 oppchofcl 17114 yoncl 17116 yon11 17118 yon12 17119 yon2 17120 yonpropd 17122 oppcyon 17123 oyoncl 17124 yonedalem1 17126 yonedalem21 17127 yonedalem3a 17128 yonedalem22 17132 yonedalem3b 17133 yonedainv 17135 yonffthlem 17136 yoniso 17139 |
Copyright terms: Public domain | W3C validator |