Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opnvonmbllem1 Structured version   Visualization version   GIF version

Theorem opnvonmbllem1 41167
 Description: The half-open interval expressed using a composition of a function (Contributed by Glauco Siliprandi, 24-Dec-2020.)
Hypotheses
Ref Expression
opnvonmbllem1.i 𝑖𝜑
opnvonmbllem1.x (𝜑𝑋𝑉)
opnvonmbllem1.c (𝜑𝐶:𝑋⟶ℚ)
opnvonmbllem1.d (𝜑𝐷:𝑋⟶ℚ)
opnvonmbllem1.s (𝜑X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖)) ⊆ 𝐵)
opnvonmbllem1.g (𝜑𝐵𝐺)
opnvonmbllem1.y (𝜑𝑌X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖)))
opnvonmbllem1.k 𝐾 = { ∈ ((ℚ × ℚ) ↑𝑚 𝑋) ∣ X𝑖𝑋 (([,) ∘ )‘𝑖) ⊆ 𝐺}
opnvonmbllem1.h 𝐻 = (𝑖𝑋 ↦ ⟨(𝐶𝑖), (𝐷𝑖)⟩)
Assertion
Ref Expression
opnvonmbllem1 (𝜑 → ∃𝐾 𝑌X𝑖𝑋 (([,) ∘ )‘𝑖))
Distinct variable groups:   ,𝐺   ,𝐻   ,𝑋,𝑖   ,𝑌
Allowed substitution hints:   𝜑(,𝑖)   𝐵(,𝑖)   𝐶(,𝑖)   𝐷(,𝑖)   𝐺(𝑖)   𝐻(𝑖)   𝐾(,𝑖)   𝑉(,𝑖)   𝑌(𝑖)

Proof of Theorem opnvonmbllem1
StepHypRef Expression
1 opnvonmbllem1.i . . . . . 6 𝑖𝜑
2 opnvonmbllem1.c . . . . . . . 8 (𝜑𝐶:𝑋⟶ℚ)
32ffvelrnda 6399 . . . . . . 7 ((𝜑𝑖𝑋) → (𝐶𝑖) ∈ ℚ)
4 opnvonmbllem1.d . . . . . . . 8 (𝜑𝐷:𝑋⟶ℚ)
54ffvelrnda 6399 . . . . . . 7 ((𝜑𝑖𝑋) → (𝐷𝑖) ∈ ℚ)
6 opelxpi 5182 . . . . . . 7 (((𝐶𝑖) ∈ ℚ ∧ (𝐷𝑖) ∈ ℚ) → ⟨(𝐶𝑖), (𝐷𝑖)⟩ ∈ (ℚ × ℚ))
73, 5, 6syl2anc 694 . . . . . 6 ((𝜑𝑖𝑋) → ⟨(𝐶𝑖), (𝐷𝑖)⟩ ∈ (ℚ × ℚ))
8 opnvonmbllem1.h . . . . . 6 𝐻 = (𝑖𝑋 ↦ ⟨(𝐶𝑖), (𝐷𝑖)⟩)
91, 7, 8fmptdf 6427 . . . . 5 (𝜑𝐻:𝑋⟶(ℚ × ℚ))
10 qex 11838 . . . . . . . . 9 ℚ ∈ V
1110, 10xpex 7004 . . . . . . . 8 (ℚ × ℚ) ∈ V
1211a1i 11 . . . . . . 7 (𝜑 → (ℚ × ℚ) ∈ V)
13 opnvonmbllem1.x . . . . . . 7 (𝜑𝑋𝑉)
1412, 13jca 553 . . . . . 6 (𝜑 → ((ℚ × ℚ) ∈ V ∧ 𝑋𝑉))
15 elmapg 7912 . . . . . 6 (((ℚ × ℚ) ∈ V ∧ 𝑋𝑉) → (𝐻 ∈ ((ℚ × ℚ) ↑𝑚 𝑋) ↔ 𝐻:𝑋⟶(ℚ × ℚ)))
1614, 15syl 17 . . . . 5 (𝜑 → (𝐻 ∈ ((ℚ × ℚ) ↑𝑚 𝑋) ↔ 𝐻:𝑋⟶(ℚ × ℚ)))
179, 16mpbird 247 . . . 4 (𝜑𝐻 ∈ ((ℚ × ℚ) ↑𝑚 𝑋))
181, 8hoi2toco 41142 . . . . 5 (𝜑X𝑖𝑋 (([,) ∘ 𝐻)‘𝑖) = X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖)))
19 opnvonmbllem1.s . . . . . 6 (𝜑X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖)) ⊆ 𝐵)
20 opnvonmbllem1.g . . . . . 6 (𝜑𝐵𝐺)
2119, 20sstrd 3646 . . . . 5 (𝜑X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖)) ⊆ 𝐺)
2218, 21eqsstrd 3672 . . . 4 (𝜑X𝑖𝑋 (([,) ∘ 𝐻)‘𝑖) ⊆ 𝐺)
2317, 22jca 553 . . 3 (𝜑 → (𝐻 ∈ ((ℚ × ℚ) ↑𝑚 𝑋) ∧ X𝑖𝑋 (([,) ∘ 𝐻)‘𝑖) ⊆ 𝐺))
24 nfcv 2793 . . . . . . 7 𝑖
25 nfmpt1 4780 . . . . . . . 8 𝑖(𝑖𝑋 ↦ ⟨(𝐶𝑖), (𝐷𝑖)⟩)
268, 25nfcxfr 2791 . . . . . . 7 𝑖𝐻
2724, 26nfeq 2805 . . . . . 6 𝑖 = 𝐻
28 coeq2 5313 . . . . . . . 8 ( = 𝐻 → ([,) ∘ ) = ([,) ∘ 𝐻))
2928fveq1d 6231 . . . . . . 7 ( = 𝐻 → (([,) ∘ )‘𝑖) = (([,) ∘ 𝐻)‘𝑖))
3029adantr 480 . . . . . 6 (( = 𝐻𝑖𝑋) → (([,) ∘ )‘𝑖) = (([,) ∘ 𝐻)‘𝑖))
3127, 30ixpeq2d 39551 . . . . 5 ( = 𝐻X𝑖𝑋 (([,) ∘ )‘𝑖) = X𝑖𝑋 (([,) ∘ 𝐻)‘𝑖))
3231sseq1d 3665 . . . 4 ( = 𝐻 → (X𝑖𝑋 (([,) ∘ )‘𝑖) ⊆ 𝐺X𝑖𝑋 (([,) ∘ 𝐻)‘𝑖) ⊆ 𝐺))
33 opnvonmbllem1.k . . . 4 𝐾 = { ∈ ((ℚ × ℚ) ↑𝑚 𝑋) ∣ X𝑖𝑋 (([,) ∘ )‘𝑖) ⊆ 𝐺}
3432, 33elrab2 3399 . . 3 (𝐻𝐾 ↔ (𝐻 ∈ ((ℚ × ℚ) ↑𝑚 𝑋) ∧ X𝑖𝑋 (([,) ∘ 𝐻)‘𝑖) ⊆ 𝐺))
3523, 34sylibr 224 . 2 (𝜑𝐻𝐾)
36 opnvonmbllem1.y . . 3 (𝜑𝑌X𝑖𝑋 ((𝐶𝑖)[,)(𝐷𝑖)))
3736, 18eleqtrrd 2733 . 2 (𝜑𝑌X𝑖𝑋 (([,) ∘ 𝐻)‘𝑖))
38 nfv 1883 . . 3 𝑌X𝑖𝑋 (([,) ∘ 𝐻)‘𝑖)
39 nfcv 2793 . . 3 𝐻
40 nfrab1 3152 . . . 4 { ∈ ((ℚ × ℚ) ↑𝑚 𝑋) ∣ X𝑖𝑋 (([,) ∘ )‘𝑖) ⊆ 𝐺}
4133, 40nfcxfr 2791 . . 3 𝐾
4231eleq2d 2716 . . 3 ( = 𝐻 → (𝑌X𝑖𝑋 (([,) ∘ )‘𝑖) ↔ 𝑌X𝑖𝑋 (([,) ∘ 𝐻)‘𝑖)))
4338, 39, 41, 42rspcef 39555 . 2 ((𝐻𝐾𝑌X𝑖𝑋 (([,) ∘ 𝐻)‘𝑖)) → ∃𝐾 𝑌X𝑖𝑋 (([,) ∘ )‘𝑖))
4435, 37, 43syl2anc 694 1 (𝜑 → ∃𝐾 𝑌X𝑖𝑋 (([,) ∘ )‘𝑖))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383   = wceq 1523  Ⅎwnf 1748   ∈ wcel 2030  ∃wrex 2942  {crab 2945  Vcvv 3231   ⊆ wss 3607  ⟨cop 4216   ↦ cmpt 4762   × cxp 5141   ∘ ccom 5147  ⟶wf 5922  ‘cfv 5926  (class class class)co 6690   ↑𝑚 cmap 7899  Xcixp 7950  ℚcq 11826  [,)cico 12215 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-er 7787  df-map 7901  df-ixp 7951  df-en 7998  df-dom 7999  df-sdom 8000  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-z 11416  df-q 11827 This theorem is referenced by:  opnvonmbllem2  41168
 Copyright terms: Public domain W3C validator