MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opnreen Structured version   Visualization version   GIF version

Theorem opnreen 22574
Description: Every nonempty open set is uncountable. (Contributed by Mario Carneiro, 26-Jul-2014.) (Revised by Mario Carneiro, 20-Feb-2015.)
Assertion
Ref Expression
opnreen ((𝐴 ∈ (topGen‘ran (,)) ∧ 𝐴 ≠ ∅) → 𝐴 ≈ 𝒫 ℕ)

Proof of Theorem opnreen
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reex 9987 . . . . 5 ℝ ∈ V
2 elssuni 4440 . . . . . 6 (𝐴 ∈ (topGen‘ran (,)) → 𝐴 (topGen‘ran (,)))
3 uniretop 22506 . . . . . 6 ℝ = (topGen‘ran (,))
42, 3syl6sseqr 3637 . . . . 5 (𝐴 ∈ (topGen‘ran (,)) → 𝐴 ⊆ ℝ)
5 ssdomg 7961 . . . . 5 (ℝ ∈ V → (𝐴 ⊆ ℝ → 𝐴 ≼ ℝ))
61, 4, 5mpsyl 68 . . . 4 (𝐴 ∈ (topGen‘ran (,)) → 𝐴 ≼ ℝ)
7 rpnnen 14900 . . . 4 ℝ ≈ 𝒫 ℕ
8 domentr 7975 . . . 4 ((𝐴 ≼ ℝ ∧ ℝ ≈ 𝒫 ℕ) → 𝐴 ≼ 𝒫 ℕ)
96, 7, 8sylancl 693 . . 3 (𝐴 ∈ (topGen‘ran (,)) → 𝐴 ≼ 𝒫 ℕ)
109adantr 481 . 2 ((𝐴 ∈ (topGen‘ran (,)) ∧ 𝐴 ≠ ∅) → 𝐴 ≼ 𝒫 ℕ)
11 n0 3913 . . . 4 (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥𝐴)
124sselda 3588 . . . . . . . . . 10 ((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑥𝐴) → 𝑥 ∈ ℝ)
13 rpnnen2 14899 . . . . . . . . . . . . 13 𝒫 ℕ ≼ (0[,]1)
14 rphalfcl 11818 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℝ+ → (𝑦 / 2) ∈ ℝ+)
1514rpred 11832 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℝ+ → (𝑦 / 2) ∈ ℝ)
16 resubcl 10305 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ ∧ (𝑦 / 2) ∈ ℝ) → (𝑥 − (𝑦 / 2)) ∈ ℝ)
1715, 16sylan2 491 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+) → (𝑥 − (𝑦 / 2)) ∈ ℝ)
18 readdcl 9979 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ ∧ (𝑦 / 2) ∈ ℝ) → (𝑥 + (𝑦 / 2)) ∈ ℝ)
1915, 18sylan2 491 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+) → (𝑥 + (𝑦 / 2)) ∈ ℝ)
20 simpl 473 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+) → 𝑥 ∈ ℝ)
21 ltsubrp 11826 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ ∧ (𝑦 / 2) ∈ ℝ+) → (𝑥 − (𝑦 / 2)) < 𝑥)
2214, 21sylan2 491 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+) → (𝑥 − (𝑦 / 2)) < 𝑥)
23 ltaddrp 11827 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ ∧ (𝑦 / 2) ∈ ℝ+) → 𝑥 < (𝑥 + (𝑦 / 2)))
2414, 23sylan2 491 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+) → 𝑥 < (𝑥 + (𝑦 / 2)))
2517, 20, 19, 22, 24lttrd 10158 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+) → (𝑥 − (𝑦 / 2)) < (𝑥 + (𝑦 / 2)))
26 iccen 12275 . . . . . . . . . . . . . 14 (((𝑥 − (𝑦 / 2)) ∈ ℝ ∧ (𝑥 + (𝑦 / 2)) ∈ ℝ ∧ (𝑥 − (𝑦 / 2)) < (𝑥 + (𝑦 / 2))) → (0[,]1) ≈ ((𝑥 − (𝑦 / 2))[,](𝑥 + (𝑦 / 2))))
2717, 19, 25, 26syl3anc 1323 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+) → (0[,]1) ≈ ((𝑥 − (𝑦 / 2))[,](𝑥 + (𝑦 / 2))))
28 domentr 7975 . . . . . . . . . . . . 13 ((𝒫 ℕ ≼ (0[,]1) ∧ (0[,]1) ≈ ((𝑥 − (𝑦 / 2))[,](𝑥 + (𝑦 / 2)))) → 𝒫 ℕ ≼ ((𝑥 − (𝑦 / 2))[,](𝑥 + (𝑦 / 2))))
2913, 27, 28sylancr 694 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+) → 𝒫 ℕ ≼ ((𝑥 − (𝑦 / 2))[,](𝑥 + (𝑦 / 2))))
30 ovex 6643 . . . . . . . . . . . . 13 ((𝑥𝑦)(,)(𝑥 + 𝑦)) ∈ V
31 rpre 11799 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℝ+𝑦 ∈ ℝ)
32 resubcl 10305 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥𝑦) ∈ ℝ)
3331, 32sylan2 491 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+) → (𝑥𝑦) ∈ ℝ)
3433rexrd 10049 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+) → (𝑥𝑦) ∈ ℝ*)
35 readdcl 9979 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 + 𝑦) ∈ ℝ)
3631, 35sylan2 491 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+) → (𝑥 + 𝑦) ∈ ℝ)
3736rexrd 10049 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+) → (𝑥 + 𝑦) ∈ ℝ*)
3820recnd 10028 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+) → 𝑥 ∈ ℂ)
3915adantl 482 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+) → (𝑦 / 2) ∈ ℝ)
4039recnd 10028 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+) → (𝑦 / 2) ∈ ℂ)
4138, 40, 40subsub4d 10383 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+) → ((𝑥 − (𝑦 / 2)) − (𝑦 / 2)) = (𝑥 − ((𝑦 / 2) + (𝑦 / 2))))
4231adantl 482 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+) → 𝑦 ∈ ℝ)
4342recnd 10028 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+) → 𝑦 ∈ ℂ)
44432halvesd 11238 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+) → ((𝑦 / 2) + (𝑦 / 2)) = 𝑦)
4544oveq2d 6631 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+) → (𝑥 − ((𝑦 / 2) + (𝑦 / 2))) = (𝑥𝑦))
4641, 45eqtrd 2655 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+) → ((𝑥 − (𝑦 / 2)) − (𝑦 / 2)) = (𝑥𝑦))
4714adantl 482 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+) → (𝑦 / 2) ∈ ℝ+)
4817, 47ltsubrpd 11864 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+) → ((𝑥 − (𝑦 / 2)) − (𝑦 / 2)) < (𝑥 − (𝑦 / 2)))
4946, 48eqbrtrrd 4647 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+) → (𝑥𝑦) < (𝑥 − (𝑦 / 2)))
50 ltaddrp 11827 . . . . . . . . . . . . . . . 16 (((𝑥 + (𝑦 / 2)) ∈ ℝ ∧ (𝑦 / 2) ∈ ℝ+) → (𝑥 + (𝑦 / 2)) < ((𝑥 + (𝑦 / 2)) + (𝑦 / 2)))
5119, 47, 50syl2anc 692 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+) → (𝑥 + (𝑦 / 2)) < ((𝑥 + (𝑦 / 2)) + (𝑦 / 2)))
5238, 40, 40addassd 10022 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+) → ((𝑥 + (𝑦 / 2)) + (𝑦 / 2)) = (𝑥 + ((𝑦 / 2) + (𝑦 / 2))))
5344oveq2d 6631 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+) → (𝑥 + ((𝑦 / 2) + (𝑦 / 2))) = (𝑥 + 𝑦))
5452, 53eqtrd 2655 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+) → ((𝑥 + (𝑦 / 2)) + (𝑦 / 2)) = (𝑥 + 𝑦))
5551, 54breqtrd 4649 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+) → (𝑥 + (𝑦 / 2)) < (𝑥 + 𝑦))
56 iccssioo 12200 . . . . . . . . . . . . . 14 ((((𝑥𝑦) ∈ ℝ* ∧ (𝑥 + 𝑦) ∈ ℝ*) ∧ ((𝑥𝑦) < (𝑥 − (𝑦 / 2)) ∧ (𝑥 + (𝑦 / 2)) < (𝑥 + 𝑦))) → ((𝑥 − (𝑦 / 2))[,](𝑥 + (𝑦 / 2))) ⊆ ((𝑥𝑦)(,)(𝑥 + 𝑦)))
5734, 37, 49, 55, 56syl22anc 1324 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+) → ((𝑥 − (𝑦 / 2))[,](𝑥 + (𝑦 / 2))) ⊆ ((𝑥𝑦)(,)(𝑥 + 𝑦)))
58 ssdomg 7961 . . . . . . . . . . . . 13 (((𝑥𝑦)(,)(𝑥 + 𝑦)) ∈ V → (((𝑥 − (𝑦 / 2))[,](𝑥 + (𝑦 / 2))) ⊆ ((𝑥𝑦)(,)(𝑥 + 𝑦)) → ((𝑥 − (𝑦 / 2))[,](𝑥 + (𝑦 / 2))) ≼ ((𝑥𝑦)(,)(𝑥 + 𝑦))))
5930, 57, 58mpsyl 68 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+) → ((𝑥 − (𝑦 / 2))[,](𝑥 + (𝑦 / 2))) ≼ ((𝑥𝑦)(,)(𝑥 + 𝑦)))
60 domtr 7969 . . . . . . . . . . . 12 ((𝒫 ℕ ≼ ((𝑥 − (𝑦 / 2))[,](𝑥 + (𝑦 / 2))) ∧ ((𝑥 − (𝑦 / 2))[,](𝑥 + (𝑦 / 2))) ≼ ((𝑥𝑦)(,)(𝑥 + 𝑦))) → 𝒫 ℕ ≼ ((𝑥𝑦)(,)(𝑥 + 𝑦)))
6129, 59, 60syl2anc 692 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+) → 𝒫 ℕ ≼ ((𝑥𝑦)(,)(𝑥 + 𝑦)))
62 eqid 2621 . . . . . . . . . . . . 13 ((abs ∘ − ) ↾ (ℝ × ℝ)) = ((abs ∘ − ) ↾ (ℝ × ℝ))
6362bl2ioo 22535 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑦) = ((𝑥𝑦)(,)(𝑥 + 𝑦)))
6431, 63sylan2 491 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+) → (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑦) = ((𝑥𝑦)(,)(𝑥 + 𝑦)))
6561, 64breqtrrd 4651 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+) → 𝒫 ℕ ≼ (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑦))
6612, 65sylan 488 . . . . . . . . 9 (((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑥𝐴) ∧ 𝑦 ∈ ℝ+) → 𝒫 ℕ ≼ (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑦))
6766adantr 481 . . . . . . . 8 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑥𝐴) ∧ 𝑦 ∈ ℝ+) ∧ (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑦) ⊆ 𝐴) → 𝒫 ℕ ≼ (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑦))
68 simplll 797 . . . . . . . . 9 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑥𝐴) ∧ 𝑦 ∈ ℝ+) ∧ (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑦) ⊆ 𝐴) → 𝐴 ∈ (topGen‘ran (,)))
69 simpr 477 . . . . . . . . 9 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑥𝐴) ∧ 𝑦 ∈ ℝ+) ∧ (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑦) ⊆ 𝐴) → (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑦) ⊆ 𝐴)
70 ssdomg 7961 . . . . . . . . 9 (𝐴 ∈ (topGen‘ran (,)) → ((𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑦) ⊆ 𝐴 → (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑦) ≼ 𝐴))
7168, 69, 70sylc 65 . . . . . . . 8 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑥𝐴) ∧ 𝑦 ∈ ℝ+) ∧ (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑦) ⊆ 𝐴) → (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑦) ≼ 𝐴)
72 domtr 7969 . . . . . . . 8 ((𝒫 ℕ ≼ (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑦) ∧ (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑦) ≼ 𝐴) → 𝒫 ℕ ≼ 𝐴)
7367, 71, 72syl2anc 692 . . . . . . 7 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑥𝐴) ∧ 𝑦 ∈ ℝ+) ∧ (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑦) ⊆ 𝐴) → 𝒫 ℕ ≼ 𝐴)
74 eqid 2621 . . . . . . . . . 10 (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ))) = (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ)))
7562, 74tgioo 22539 . . . . . . . . 9 (topGen‘ran (,)) = (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ)))
7675eleq2i 2690 . . . . . . . 8 (𝐴 ∈ (topGen‘ran (,)) ↔ 𝐴 ∈ (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ))))
7762rexmet 22534 . . . . . . . . 9 ((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (∞Met‘ℝ)
7874mopni2 22238 . . . . . . . . 9 ((((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (∞Met‘ℝ) ∧ 𝐴 ∈ (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ))) ∧ 𝑥𝐴) → ∃𝑦 ∈ ℝ+ (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑦) ⊆ 𝐴)
7977, 78mp3an1 1408 . . . . . . . 8 ((𝐴 ∈ (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ))) ∧ 𝑥𝐴) → ∃𝑦 ∈ ℝ+ (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑦) ⊆ 𝐴)
8076, 79sylanb 489 . . . . . . 7 ((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑥𝐴) → ∃𝑦 ∈ ℝ+ (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑦) ⊆ 𝐴)
8173, 80r19.29a 3073 . . . . . 6 ((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑥𝐴) → 𝒫 ℕ ≼ 𝐴)
8281ex 450 . . . . 5 (𝐴 ∈ (topGen‘ran (,)) → (𝑥𝐴 → 𝒫 ℕ ≼ 𝐴))
8382exlimdv 1858 . . . 4 (𝐴 ∈ (topGen‘ran (,)) → (∃𝑥 𝑥𝐴 → 𝒫 ℕ ≼ 𝐴))
8411, 83syl5bi 232 . . 3 (𝐴 ∈ (topGen‘ran (,)) → (𝐴 ≠ ∅ → 𝒫 ℕ ≼ 𝐴))
8584imp 445 . 2 ((𝐴 ∈ (topGen‘ran (,)) ∧ 𝐴 ≠ ∅) → 𝒫 ℕ ≼ 𝐴)
86 sbth 8040 . 2 ((𝐴 ≼ 𝒫 ℕ ∧ 𝒫 ℕ ≼ 𝐴) → 𝐴 ≈ 𝒫 ℕ)
8710, 85, 86syl2anc 692 1 ((𝐴 ∈ (topGen‘ran (,)) ∧ 𝐴 ≠ ∅) → 𝐴 ≈ 𝒫 ℕ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1480  wex 1701  wcel 1987  wne 2790  wrex 2909  Vcvv 3190  wss 3560  c0 3897  𝒫 cpw 4136   cuni 4409   class class class wbr 4623   × cxp 5082  ran crn 5085  cres 5086  ccom 5088  cfv 5857  (class class class)co 6615  cen 7912  cdom 7913  cr 9895  0cc0 9896  1c1 9897   + caddc 9899  *cxr 10033   < clt 10034  cmin 10226   / cdiv 10644  cn 10980  2c2 11030  +crp 11792  (,)cioo 12133  [,]cicc 12136  abscabs 13924  topGenctg 16038  ∞Metcxmt 19671  ballcbl 19673  MetOpencmopn 19676
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4741  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914  ax-inf2 8498  ax-cnex 9952  ax-resscn 9953  ax-1cn 9954  ax-icn 9955  ax-addcl 9956  ax-addrcl 9957  ax-mulcl 9958  ax-mulrcl 9959  ax-mulcom 9960  ax-addass 9961  ax-mulass 9962  ax-distr 9963  ax-i2m1 9964  ax-1ne0 9965  ax-1rid 9966  ax-rnegex 9967  ax-rrecex 9968  ax-cnre 9969  ax-pre-lttri 9970  ax-pre-lttrn 9971  ax-pre-ltadd 9972  ax-pre-mulgt0 9973  ax-pre-sup 9974
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2913  df-rex 2914  df-reu 2915  df-rmo 2916  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-tp 4160  df-op 4162  df-uni 4410  df-int 4448  df-iun 4494  df-br 4624  df-opab 4684  df-mpt 4685  df-tr 4723  df-eprel 4995  df-id 4999  df-po 5005  df-so 5006  df-fr 5043  df-se 5044  df-we 5045  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-pred 5649  df-ord 5695  df-on 5696  df-lim 5697  df-suc 5698  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-isom 5866  df-riota 6576  df-ov 6618  df-oprab 6619  df-mpt2 6620  df-om 7028  df-1st 7128  df-2nd 7129  df-wrecs 7367  df-recs 7428  df-rdg 7466  df-1o 7520  df-2o 7521  df-oadd 7524  df-omul 7525  df-er 7702  df-map 7819  df-pm 7820  df-en 7916  df-dom 7917  df-sdom 7918  df-fin 7919  df-sup 8308  df-inf 8309  df-oi 8375  df-card 8725  df-acn 8728  df-pnf 10036  df-mnf 10037  df-xr 10038  df-ltxr 10039  df-le 10040  df-sub 10228  df-neg 10229  df-div 10645  df-nn 10981  df-2 11039  df-3 11040  df-n0 11253  df-z 11338  df-uz 11648  df-q 11749  df-rp 11793  df-xneg 11906  df-xadd 11907  df-xmul 11908  df-ioo 12137  df-ico 12139  df-icc 12140  df-fz 12285  df-fzo 12423  df-fl 12549  df-seq 12758  df-exp 12817  df-hash 13074  df-cj 13789  df-re 13790  df-im 13791  df-sqrt 13925  df-abs 13926  df-limsup 14152  df-clim 14169  df-rlim 14170  df-sum 14367  df-topgen 16044  df-psmet 19678  df-xmet 19679  df-met 19680  df-bl 19681  df-mopn 19682  df-top 20639  df-topon 20656  df-bases 20690
This theorem is referenced by:  rectbntr0  22575
  Copyright terms: Public domain W3C validator