![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > opnoncon | Structured version Visualization version GIF version |
Description: Law of contradiction for orthoposets. (chocin 28684 analog.) (Contributed by NM, 13-Sep-2011.) |
Ref | Expression |
---|---|
opnoncon.b | ⊢ 𝐵 = (Base‘𝐾) |
opnoncon.o | ⊢ ⊥ = (oc‘𝐾) |
opnoncon.m | ⊢ ∧ = (meet‘𝐾) |
opnoncon.z | ⊢ 0 = (0.‘𝐾) |
Ref | Expression |
---|---|
opnoncon | ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → (𝑋 ∧ ( ⊥ ‘𝑋)) = 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opnoncon.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
2 | eqid 2760 | . . . 4 ⊢ (le‘𝐾) = (le‘𝐾) | |
3 | opnoncon.o | . . . 4 ⊢ ⊥ = (oc‘𝐾) | |
4 | eqid 2760 | . . . 4 ⊢ (join‘𝐾) = (join‘𝐾) | |
5 | opnoncon.m | . . . 4 ⊢ ∧ = (meet‘𝐾) | |
6 | opnoncon.z | . . . 4 ⊢ 0 = (0.‘𝐾) | |
7 | eqid 2760 | . . . 4 ⊢ (1.‘𝐾) = (1.‘𝐾) | |
8 | 1, 2, 3, 4, 5, 6, 7 | oposlem 34990 | . . 3 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → ((( ⊥ ‘𝑋) ∈ 𝐵 ∧ ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋 ∧ (𝑋(le‘𝐾)𝑋 → ( ⊥ ‘𝑋)(le‘𝐾)( ⊥ ‘𝑋))) ∧ (𝑋(join‘𝐾)( ⊥ ‘𝑋)) = (1.‘𝐾) ∧ (𝑋 ∧ ( ⊥ ‘𝑋)) = 0 )) |
9 | 8 | 3anidm23 1532 | . 2 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → ((( ⊥ ‘𝑋) ∈ 𝐵 ∧ ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋 ∧ (𝑋(le‘𝐾)𝑋 → ( ⊥ ‘𝑋)(le‘𝐾)( ⊥ ‘𝑋))) ∧ (𝑋(join‘𝐾)( ⊥ ‘𝑋)) = (1.‘𝐾) ∧ (𝑋 ∧ ( ⊥ ‘𝑋)) = 0 )) |
10 | 9 | simp3d 1139 | 1 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → (𝑋 ∧ ( ⊥ ‘𝑋)) = 0 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∧ w3a 1072 = wceq 1632 ∈ wcel 2139 class class class wbr 4804 ‘cfv 6049 (class class class)co 6814 Basecbs 16079 lecple 16170 occoc 16171 joincjn 17165 meetcmee 17166 0.cp0 17258 1.cp1 17259 OPcops 34980 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-nul 4941 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-sbc 3577 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-br 4805 df-dm 5276 df-iota 6012 df-fv 6057 df-ov 6817 df-oposet 34984 |
This theorem is referenced by: omlfh1N 35066 omlspjN 35069 atlatmstc 35127 pnonsingN 35740 lhpocnle 35823 dochnoncon 37200 |
Copyright terms: Public domain | W3C validator |