Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opnmbllem0 Structured version   Visualization version   GIF version

Theorem opnmbllem0 33677
Description: Lemma for ismblfin 33682; could also be used to shorten proof of opnmbllem 23490. (Contributed by Brendan Leahy, 13-Jul-2018.)
Assertion
Ref Expression
opnmbllem0 (𝐴 ∈ (topGen‘ran (,)) → ([,] “ {𝑧 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑧) ⊆ 𝐴}) = 𝐴)
Distinct variable group:   𝑥,𝑦,𝑧,𝐴

Proof of Theorem opnmbllem0
Dummy variables 𝑛 𝑟 𝑠 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6304 . . . . . . . 8 (𝑧 = 𝑤 → ([,]‘𝑧) = ([,]‘𝑤))
21sseq1d 3738 . . . . . . 7 (𝑧 = 𝑤 → (([,]‘𝑧) ⊆ 𝐴 ↔ ([,]‘𝑤) ⊆ 𝐴))
32elrab 3469 . . . . . 6 (𝑤 ∈ {𝑧 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑧) ⊆ 𝐴} ↔ (𝑤 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∧ ([,]‘𝑤) ⊆ 𝐴))
4 simprr 813 . . . . . . 7 ((𝐴 ∈ (topGen‘ran (,)) ∧ (𝑤 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∧ ([,]‘𝑤) ⊆ 𝐴)) → ([,]‘𝑤) ⊆ 𝐴)
5 fvex 6314 . . . . . . . 8 ([,]‘𝑤) ∈ V
65elpw 4272 . . . . . . 7 (([,]‘𝑤) ∈ 𝒫 𝐴 ↔ ([,]‘𝑤) ⊆ 𝐴)
74, 6sylibr 224 . . . . . 6 ((𝐴 ∈ (topGen‘ran (,)) ∧ (𝑤 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∧ ([,]‘𝑤) ⊆ 𝐴)) → ([,]‘𝑤) ∈ 𝒫 𝐴)
83, 7sylan2b 493 . . . . 5 ((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤 ∈ {𝑧 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑧) ⊆ 𝐴}) → ([,]‘𝑤) ∈ 𝒫 𝐴)
98ralrimiva 3068 . . . 4 (𝐴 ∈ (topGen‘ran (,)) → ∀𝑤 ∈ {𝑧 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑧) ⊆ 𝐴} ([,]‘𝑤) ∈ 𝒫 𝐴)
10 iccf 12386 . . . . . 6 [,]:(ℝ* × ℝ*)⟶𝒫 ℝ*
11 ffun 6161 . . . . . 6 ([,]:(ℝ* × ℝ*)⟶𝒫 ℝ* → Fun [,])
1210, 11ax-mp 5 . . . . 5 Fun [,]
13 ssrab2 3793 . . . . . . 7 {𝑧 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑧) ⊆ 𝐴} ⊆ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)
14 oveq1 6772 . . . . . . . . . . . 12 (𝑥 = 𝑟 → (𝑥 / (2↑𝑦)) = (𝑟 / (2↑𝑦)))
15 oveq1 6772 . . . . . . . . . . . . 13 (𝑥 = 𝑟 → (𝑥 + 1) = (𝑟 + 1))
1615oveq1d 6780 . . . . . . . . . . . 12 (𝑥 = 𝑟 → ((𝑥 + 1) / (2↑𝑦)) = ((𝑟 + 1) / (2↑𝑦)))
1714, 16opeq12d 4517 . . . . . . . . . . 11 (𝑥 = 𝑟 → ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩ = ⟨(𝑟 / (2↑𝑦)), ((𝑟 + 1) / (2↑𝑦))⟩)
18 oveq2 6773 . . . . . . . . . . . . 13 (𝑦 = 𝑠 → (2↑𝑦) = (2↑𝑠))
1918oveq2d 6781 . . . . . . . . . . . 12 (𝑦 = 𝑠 → (𝑟 / (2↑𝑦)) = (𝑟 / (2↑𝑠)))
2018oveq2d 6781 . . . . . . . . . . . 12 (𝑦 = 𝑠 → ((𝑟 + 1) / (2↑𝑦)) = ((𝑟 + 1) / (2↑𝑠)))
2119, 20opeq12d 4517 . . . . . . . . . . 11 (𝑦 = 𝑠 → ⟨(𝑟 / (2↑𝑦)), ((𝑟 + 1) / (2↑𝑦))⟩ = ⟨(𝑟 / (2↑𝑠)), ((𝑟 + 1) / (2↑𝑠))⟩)
2217, 21cbvmpt2v 6852 . . . . . . . . . 10 (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) = (𝑟 ∈ ℤ, 𝑠 ∈ ℕ0 ↦ ⟨(𝑟 / (2↑𝑠)), ((𝑟 + 1) / (2↑𝑠))⟩)
2322dyadf 23480 . . . . . . . . 9 (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩):(ℤ × ℕ0)⟶( ≤ ∩ (ℝ × ℝ))
24 frn 6166 . . . . . . . . 9 ((𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩):(ℤ × ℕ0)⟶( ≤ ∩ (ℝ × ℝ)) → ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ⊆ ( ≤ ∩ (ℝ × ℝ)))
2523, 24ax-mp 5 . . . . . . . 8 ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ⊆ ( ≤ ∩ (ℝ × ℝ))
26 inss2 3942 . . . . . . . . 9 ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ × ℝ)
27 rexpssxrxp 10197 . . . . . . . . 9 (ℝ × ℝ) ⊆ (ℝ* × ℝ*)
2826, 27sstri 3718 . . . . . . . 8 ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ* × ℝ*)
2925, 28sstri 3718 . . . . . . 7 ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ⊆ (ℝ* × ℝ*)
3013, 29sstri 3718 . . . . . 6 {𝑧 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑧) ⊆ 𝐴} ⊆ (ℝ* × ℝ*)
3110fdmi 6165 . . . . . 6 dom [,] = (ℝ* × ℝ*)
3230, 31sseqtr4i 3744 . . . . 5 {𝑧 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑧) ⊆ 𝐴} ⊆ dom [,]
33 funimass4 6361 . . . . 5 ((Fun [,] ∧ {𝑧 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑧) ⊆ 𝐴} ⊆ dom [,]) → (([,] “ {𝑧 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑧) ⊆ 𝐴}) ⊆ 𝒫 𝐴 ↔ ∀𝑤 ∈ {𝑧 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑧) ⊆ 𝐴} ([,]‘𝑤) ∈ 𝒫 𝐴))
3412, 32, 33mp2an 710 . . . 4 (([,] “ {𝑧 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑧) ⊆ 𝐴}) ⊆ 𝒫 𝐴 ↔ ∀𝑤 ∈ {𝑧 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑧) ⊆ 𝐴} ([,]‘𝑤) ∈ 𝒫 𝐴)
359, 34sylibr 224 . . 3 (𝐴 ∈ (topGen‘ran (,)) → ([,] “ {𝑧 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑧) ⊆ 𝐴}) ⊆ 𝒫 𝐴)
36 sspwuni 4719 . . 3 (([,] “ {𝑧 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑧) ⊆ 𝐴}) ⊆ 𝒫 𝐴 ([,] “ {𝑧 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑧) ⊆ 𝐴}) ⊆ 𝐴)
3735, 36sylib 208 . 2 (𝐴 ∈ (topGen‘ran (,)) → ([,] “ {𝑧 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑧) ⊆ 𝐴}) ⊆ 𝐴)
38 eqid 2724 . . . . . . 7 ((abs ∘ − ) ↾ (ℝ × ℝ)) = ((abs ∘ − ) ↾ (ℝ × ℝ))
3938rexmet 22716 . . . . . 6 ((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (∞Met‘ℝ)
40 eqid 2724 . . . . . . . 8 (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ))) = (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ)))
4138, 40tgioo 22721 . . . . . . 7 (topGen‘ran (,)) = (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ)))
4241mopni2 22420 . . . . . 6 ((((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (∞Met‘ℝ) ∧ 𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) → ∃𝑟 ∈ ℝ+ (𝑤(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝐴)
4339, 42mp3an1 1524 . . . . 5 ((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) → ∃𝑟 ∈ ℝ+ (𝑤(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝐴)
44 elssuni 4575 . . . . . . . . . . 11 (𝐴 ∈ (topGen‘ran (,)) → 𝐴 (topGen‘ran (,)))
45 uniretop 22688 . . . . . . . . . . 11 ℝ = (topGen‘ran (,))
4644, 45syl6sseqr 3758 . . . . . . . . . 10 (𝐴 ∈ (topGen‘ran (,)) → 𝐴 ⊆ ℝ)
4746sselda 3709 . . . . . . . . 9 ((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) → 𝑤 ∈ ℝ)
48 rpre 11953 . . . . . . . . 9 (𝑟 ∈ ℝ+𝑟 ∈ ℝ)
4938bl2ioo 22717 . . . . . . . . 9 ((𝑤 ∈ ℝ ∧ 𝑟 ∈ ℝ) → (𝑤(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) = ((𝑤𝑟)(,)(𝑤 + 𝑟)))
5047, 48, 49syl2an 495 . . . . . . . 8 (((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ 𝑟 ∈ ℝ+) → (𝑤(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) = ((𝑤𝑟)(,)(𝑤 + 𝑟)))
5150sseq1d 3738 . . . . . . 7 (((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ 𝑟 ∈ ℝ+) → ((𝑤(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝐴 ↔ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴))
52 2re 11203 . . . . . . . . . . 11 2 ∈ ℝ
53 1lt2 11307 . . . . . . . . . . 11 1 < 2
54 expnlbnd 13109 . . . . . . . . . . 11 ((𝑟 ∈ ℝ+ ∧ 2 ∈ ℝ ∧ 1 < 2) → ∃𝑛 ∈ ℕ (1 / (2↑𝑛)) < 𝑟)
5552, 53, 54mp3an23 1529 . . . . . . . . . 10 (𝑟 ∈ ℝ+ → ∃𝑛 ∈ ℕ (1 / (2↑𝑛)) < 𝑟)
5655ad2antrl 766 . . . . . . . . 9 (((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) → ∃𝑛 ∈ ℕ (1 / (2↑𝑛)) < 𝑟)
5747ad2antrr 764 . . . . . . . . . . . 12 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → 𝑤 ∈ ℝ)
58 2nn 11298 . . . . . . . . . . . . . . . . . 18 2 ∈ ℕ
59 nnnn0 11412 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0)
6059ad2antrl 766 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → 𝑛 ∈ ℕ0)
61 nnexpcl 12988 . . . . . . . . . . . . . . . . . 18 ((2 ∈ ℕ ∧ 𝑛 ∈ ℕ0) → (2↑𝑛) ∈ ℕ)
6258, 60, 61sylancr 698 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → (2↑𝑛) ∈ ℕ)
6362nnred 11148 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → (2↑𝑛) ∈ ℝ)
6457, 63remulcld 10183 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → (𝑤 · (2↑𝑛)) ∈ ℝ)
65 fllelt 12713 . . . . . . . . . . . . . . 15 ((𝑤 · (2↑𝑛)) ∈ ℝ → ((⌊‘(𝑤 · (2↑𝑛))) ≤ (𝑤 · (2↑𝑛)) ∧ (𝑤 · (2↑𝑛)) < ((⌊‘(𝑤 · (2↑𝑛))) + 1)))
6664, 65syl 17 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → ((⌊‘(𝑤 · (2↑𝑛))) ≤ (𝑤 · (2↑𝑛)) ∧ (𝑤 · (2↑𝑛)) < ((⌊‘(𝑤 · (2↑𝑛))) + 1)))
6766simpld 477 . . . . . . . . . . . . 13 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → (⌊‘(𝑤 · (2↑𝑛))) ≤ (𝑤 · (2↑𝑛)))
68 reflcl 12712 . . . . . . . . . . . . . . 15 ((𝑤 · (2↑𝑛)) ∈ ℝ → (⌊‘(𝑤 · (2↑𝑛))) ∈ ℝ)
6964, 68syl 17 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → (⌊‘(𝑤 · (2↑𝑛))) ∈ ℝ)
7062nngt0d 11177 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → 0 < (2↑𝑛))
71 ledivmul2 11015 . . . . . . . . . . . . . 14 (((⌊‘(𝑤 · (2↑𝑛))) ∈ ℝ ∧ 𝑤 ∈ ℝ ∧ ((2↑𝑛) ∈ ℝ ∧ 0 < (2↑𝑛))) → (((⌊‘(𝑤 · (2↑𝑛))) / (2↑𝑛)) ≤ 𝑤 ↔ (⌊‘(𝑤 · (2↑𝑛))) ≤ (𝑤 · (2↑𝑛))))
7269, 57, 63, 70, 71syl112anc 1443 . . . . . . . . . . . . 13 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → (((⌊‘(𝑤 · (2↑𝑛))) / (2↑𝑛)) ≤ 𝑤 ↔ (⌊‘(𝑤 · (2↑𝑛))) ≤ (𝑤 · (2↑𝑛))))
7367, 72mpbird 247 . . . . . . . . . . . 12 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → ((⌊‘(𝑤 · (2↑𝑛))) / (2↑𝑛)) ≤ 𝑤)
74 peano2re 10322 . . . . . . . . . . . . . . 15 ((⌊‘(𝑤 · (2↑𝑛))) ∈ ℝ → ((⌊‘(𝑤 · (2↑𝑛))) + 1) ∈ ℝ)
7569, 74syl 17 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → ((⌊‘(𝑤 · (2↑𝑛))) + 1) ∈ ℝ)
7675, 62nndivred 11182 . . . . . . . . . . . . 13 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → (((⌊‘(𝑤 · (2↑𝑛))) + 1) / (2↑𝑛)) ∈ ℝ)
7766simprd 482 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → (𝑤 · (2↑𝑛)) < ((⌊‘(𝑤 · (2↑𝑛))) + 1))
78 ltmuldiv 11009 . . . . . . . . . . . . . . 15 ((𝑤 ∈ ℝ ∧ ((⌊‘(𝑤 · (2↑𝑛))) + 1) ∈ ℝ ∧ ((2↑𝑛) ∈ ℝ ∧ 0 < (2↑𝑛))) → ((𝑤 · (2↑𝑛)) < ((⌊‘(𝑤 · (2↑𝑛))) + 1) ↔ 𝑤 < (((⌊‘(𝑤 · (2↑𝑛))) + 1) / (2↑𝑛))))
7957, 75, 63, 70, 78syl112anc 1443 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → ((𝑤 · (2↑𝑛)) < ((⌊‘(𝑤 · (2↑𝑛))) + 1) ↔ 𝑤 < (((⌊‘(𝑤 · (2↑𝑛))) + 1) / (2↑𝑛))))
8077, 79mpbid 222 . . . . . . . . . . . . 13 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → 𝑤 < (((⌊‘(𝑤 · (2↑𝑛))) + 1) / (2↑𝑛)))
8157, 76, 80ltled 10298 . . . . . . . . . . . 12 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → 𝑤 ≤ (((⌊‘(𝑤 · (2↑𝑛))) + 1) / (2↑𝑛)))
8269, 62nndivred 11182 . . . . . . . . . . . . 13 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → ((⌊‘(𝑤 · (2↑𝑛))) / (2↑𝑛)) ∈ ℝ)
83 elicc2 12352 . . . . . . . . . . . . 13 ((((⌊‘(𝑤 · (2↑𝑛))) / (2↑𝑛)) ∈ ℝ ∧ (((⌊‘(𝑤 · (2↑𝑛))) + 1) / (2↑𝑛)) ∈ ℝ) → (𝑤 ∈ (((⌊‘(𝑤 · (2↑𝑛))) / (2↑𝑛))[,](((⌊‘(𝑤 · (2↑𝑛))) + 1) / (2↑𝑛))) ↔ (𝑤 ∈ ℝ ∧ ((⌊‘(𝑤 · (2↑𝑛))) / (2↑𝑛)) ≤ 𝑤𝑤 ≤ (((⌊‘(𝑤 · (2↑𝑛))) + 1) / (2↑𝑛)))))
8482, 76, 83syl2anc 696 . . . . . . . . . . . 12 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → (𝑤 ∈ (((⌊‘(𝑤 · (2↑𝑛))) / (2↑𝑛))[,](((⌊‘(𝑤 · (2↑𝑛))) + 1) / (2↑𝑛))) ↔ (𝑤 ∈ ℝ ∧ ((⌊‘(𝑤 · (2↑𝑛))) / (2↑𝑛)) ≤ 𝑤𝑤 ≤ (((⌊‘(𝑤 · (2↑𝑛))) + 1) / (2↑𝑛)))))
8557, 73, 81, 84mpbir3and 1382 . . . . . . . . . . 11 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → 𝑤 ∈ (((⌊‘(𝑤 · (2↑𝑛))) / (2↑𝑛))[,](((⌊‘(𝑤 · (2↑𝑛))) + 1) / (2↑𝑛))))
8664flcld 12714 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → (⌊‘(𝑤 · (2↑𝑛))) ∈ ℤ)
8722dyadval 23481 . . . . . . . . . . . . . 14 (((⌊‘(𝑤 · (2↑𝑛))) ∈ ℤ ∧ 𝑛 ∈ ℕ0) → ((⌊‘(𝑤 · (2↑𝑛)))(𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)𝑛) = ⟨((⌊‘(𝑤 · (2↑𝑛))) / (2↑𝑛)), (((⌊‘(𝑤 · (2↑𝑛))) + 1) / (2↑𝑛))⟩)
8886, 60, 87syl2anc 696 . . . . . . . . . . . . 13 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → ((⌊‘(𝑤 · (2↑𝑛)))(𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)𝑛) = ⟨((⌊‘(𝑤 · (2↑𝑛))) / (2↑𝑛)), (((⌊‘(𝑤 · (2↑𝑛))) + 1) / (2↑𝑛))⟩)
8988fveq2d 6308 . . . . . . . . . . . 12 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → ([,]‘((⌊‘(𝑤 · (2↑𝑛)))(𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)𝑛)) = ([,]‘⟨((⌊‘(𝑤 · (2↑𝑛))) / (2↑𝑛)), (((⌊‘(𝑤 · (2↑𝑛))) + 1) / (2↑𝑛))⟩))
90 df-ov 6768 . . . . . . . . . . . 12 (((⌊‘(𝑤 · (2↑𝑛))) / (2↑𝑛))[,](((⌊‘(𝑤 · (2↑𝑛))) + 1) / (2↑𝑛))) = ([,]‘⟨((⌊‘(𝑤 · (2↑𝑛))) / (2↑𝑛)), (((⌊‘(𝑤 · (2↑𝑛))) + 1) / (2↑𝑛))⟩)
9189, 90syl6eqr 2776 . . . . . . . . . . 11 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → ([,]‘((⌊‘(𝑤 · (2↑𝑛)))(𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)𝑛)) = (((⌊‘(𝑤 · (2↑𝑛))) / (2↑𝑛))[,](((⌊‘(𝑤 · (2↑𝑛))) + 1) / (2↑𝑛))))
9285, 91eleqtrrd 2806 . . . . . . . . . 10 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → 𝑤 ∈ ([,]‘((⌊‘(𝑤 · (2↑𝑛)))(𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)𝑛)))
93 ffn 6158 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩):(ℤ × ℕ0)⟶( ≤ ∩ (ℝ × ℝ)) → (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) Fn (ℤ × ℕ0))
9423, 93ax-mp 5 . . . . . . . . . . . . . 14 (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) Fn (ℤ × ℕ0)
95 fnovrn 6926 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) Fn (ℤ × ℕ0) ∧ (⌊‘(𝑤 · (2↑𝑛))) ∈ ℤ ∧ 𝑛 ∈ ℕ0) → ((⌊‘(𝑤 · (2↑𝑛)))(𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)𝑛) ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩))
9694, 95mp3an1 1524 . . . . . . . . . . . . 13 (((⌊‘(𝑤 · (2↑𝑛))) ∈ ℤ ∧ 𝑛 ∈ ℕ0) → ((⌊‘(𝑤 · (2↑𝑛)))(𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)𝑛) ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩))
9786, 60, 96syl2anc 696 . . . . . . . . . . . 12 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → ((⌊‘(𝑤 · (2↑𝑛)))(𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)𝑛) ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩))
98 simplrl 819 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → 𝑟 ∈ ℝ+)
9998rpred 11986 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → 𝑟 ∈ ℝ)
10057, 99resubcld 10571 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → (𝑤𝑟) ∈ ℝ)
101100rexrd 10202 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → (𝑤𝑟) ∈ ℝ*)
10257, 99readdcld 10182 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → (𝑤 + 𝑟) ∈ ℝ)
103102rexrd 10202 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → (𝑤 + 𝑟) ∈ ℝ*)
10482, 99readdcld 10182 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → (((⌊‘(𝑤 · (2↑𝑛))) / (2↑𝑛)) + 𝑟) ∈ ℝ)
10569recnd 10181 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → (⌊‘(𝑤 · (2↑𝑛))) ∈ ℂ)
106 1cnd 10169 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → 1 ∈ ℂ)
10763recnd 10181 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → (2↑𝑛) ∈ ℂ)
10862nnne0d 11178 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → (2↑𝑛) ≠ 0)
109105, 106, 107, 108divdird 10952 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → (((⌊‘(𝑤 · (2↑𝑛))) + 1) / (2↑𝑛)) = (((⌊‘(𝑤 · (2↑𝑛))) / (2↑𝑛)) + (1 / (2↑𝑛))))
11062nnrecred 11179 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → (1 / (2↑𝑛)) ∈ ℝ)
111 simprr 813 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → (1 / (2↑𝑛)) < 𝑟)
112110, 99, 82, 111ltadd2dd 10309 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → (((⌊‘(𝑤 · (2↑𝑛))) / (2↑𝑛)) + (1 / (2↑𝑛))) < (((⌊‘(𝑤 · (2↑𝑛))) / (2↑𝑛)) + 𝑟))
113109, 112eqbrtrd 4782 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → (((⌊‘(𝑤 · (2↑𝑛))) + 1) / (2↑𝑛)) < (((⌊‘(𝑤 · (2↑𝑛))) / (2↑𝑛)) + 𝑟))
11457, 76, 104, 80, 113lttrd 10311 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → 𝑤 < (((⌊‘(𝑤 · (2↑𝑛))) / (2↑𝑛)) + 𝑟))
11557, 99, 82ltsubaddd 10736 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → ((𝑤𝑟) < ((⌊‘(𝑤 · (2↑𝑛))) / (2↑𝑛)) ↔ 𝑤 < (((⌊‘(𝑤 · (2↑𝑛))) / (2↑𝑛)) + 𝑟)))
116114, 115mpbird 247 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → (𝑤𝑟) < ((⌊‘(𝑤 · (2↑𝑛))) / (2↑𝑛)))
11757, 110readdcld 10182 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → (𝑤 + (1 / (2↑𝑛))) ∈ ℝ)
11882, 57, 110, 73leadd1dd 10754 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → (((⌊‘(𝑤 · (2↑𝑛))) / (2↑𝑛)) + (1 / (2↑𝑛))) ≤ (𝑤 + (1 / (2↑𝑛))))
119109, 118eqbrtrd 4782 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → (((⌊‘(𝑤 · (2↑𝑛))) + 1) / (2↑𝑛)) ≤ (𝑤 + (1 / (2↑𝑛))))
120110, 99, 57, 111ltadd2dd 10309 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → (𝑤 + (1 / (2↑𝑛))) < (𝑤 + 𝑟))
12176, 117, 102, 119, 120lelttrd 10308 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → (((⌊‘(𝑤 · (2↑𝑛))) + 1) / (2↑𝑛)) < (𝑤 + 𝑟))
122 iccssioo 12356 . . . . . . . . . . . . . . 15 ((((𝑤𝑟) ∈ ℝ* ∧ (𝑤 + 𝑟) ∈ ℝ*) ∧ ((𝑤𝑟) < ((⌊‘(𝑤 · (2↑𝑛))) / (2↑𝑛)) ∧ (((⌊‘(𝑤 · (2↑𝑛))) + 1) / (2↑𝑛)) < (𝑤 + 𝑟))) → (((⌊‘(𝑤 · (2↑𝑛))) / (2↑𝑛))[,](((⌊‘(𝑤 · (2↑𝑛))) + 1) / (2↑𝑛))) ⊆ ((𝑤𝑟)(,)(𝑤 + 𝑟)))
123101, 103, 116, 121, 122syl22anc 1440 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → (((⌊‘(𝑤 · (2↑𝑛))) / (2↑𝑛))[,](((⌊‘(𝑤 · (2↑𝑛))) + 1) / (2↑𝑛))) ⊆ ((𝑤𝑟)(,)(𝑤 + 𝑟)))
12491, 123eqsstrd 3745 . . . . . . . . . . . . 13 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → ([,]‘((⌊‘(𝑤 · (2↑𝑛)))(𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)𝑛)) ⊆ ((𝑤𝑟)(,)(𝑤 + 𝑟)))
125 simplrr 820 . . . . . . . . . . . . 13 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)
126124, 125sstrd 3719 . . . . . . . . . . . 12 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → ([,]‘((⌊‘(𝑤 · (2↑𝑛)))(𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)𝑛)) ⊆ 𝐴)
127 fveq2 6304 . . . . . . . . . . . . . 14 (𝑧 = ((⌊‘(𝑤 · (2↑𝑛)))(𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)𝑛) → ([,]‘𝑧) = ([,]‘((⌊‘(𝑤 · (2↑𝑛)))(𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)𝑛)))
128127sseq1d 3738 . . . . . . . . . . . . 13 (𝑧 = ((⌊‘(𝑤 · (2↑𝑛)))(𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)𝑛) → (([,]‘𝑧) ⊆ 𝐴 ↔ ([,]‘((⌊‘(𝑤 · (2↑𝑛)))(𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)𝑛)) ⊆ 𝐴))
129128elrab 3469 . . . . . . . . . . . 12 (((⌊‘(𝑤 · (2↑𝑛)))(𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)𝑛) ∈ {𝑧 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑧) ⊆ 𝐴} ↔ (((⌊‘(𝑤 · (2↑𝑛)))(𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)𝑛) ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∧ ([,]‘((⌊‘(𝑤 · (2↑𝑛)))(𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)𝑛)) ⊆ 𝐴))
13097, 126, 129sylanbrc 701 . . . . . . . . . . 11 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → ((⌊‘(𝑤 · (2↑𝑛)))(𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)𝑛) ∈ {𝑧 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑧) ⊆ 𝐴})
131 funfvima2 6608 . . . . . . . . . . . 12 ((Fun [,] ∧ {𝑧 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑧) ⊆ 𝐴} ⊆ dom [,]) → (((⌊‘(𝑤 · (2↑𝑛)))(𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)𝑛) ∈ {𝑧 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑧) ⊆ 𝐴} → ([,]‘((⌊‘(𝑤 · (2↑𝑛)))(𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)𝑛)) ∈ ([,] “ {𝑧 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑧) ⊆ 𝐴})))
13212, 32, 131mp2an 710 . . . . . . . . . . 11 (((⌊‘(𝑤 · (2↑𝑛)))(𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)𝑛) ∈ {𝑧 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑧) ⊆ 𝐴} → ([,]‘((⌊‘(𝑤 · (2↑𝑛)))(𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)𝑛)) ∈ ([,] “ {𝑧 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑧) ⊆ 𝐴}))
133130, 132syl 17 . . . . . . . . . 10 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → ([,]‘((⌊‘(𝑤 · (2↑𝑛)))(𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)𝑛)) ∈ ([,] “ {𝑧 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑧) ⊆ 𝐴}))
134 elunii 4549 . . . . . . . . . 10 ((𝑤 ∈ ([,]‘((⌊‘(𝑤 · (2↑𝑛)))(𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)𝑛)) ∧ ([,]‘((⌊‘(𝑤 · (2↑𝑛)))(𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)𝑛)) ∈ ([,] “ {𝑧 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑧) ⊆ 𝐴})) → 𝑤 ([,] “ {𝑧 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑧) ⊆ 𝐴}))
13592, 133, 134syl2anc 696 . . . . . . . . 9 ((((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) ∧ (𝑛 ∈ ℕ ∧ (1 / (2↑𝑛)) < 𝑟)) → 𝑤 ([,] “ {𝑧 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑧) ⊆ 𝐴}))
13656, 135rexlimddv 3137 . . . . . . . 8 (((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ (𝑟 ∈ ℝ+ ∧ ((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴)) → 𝑤 ([,] “ {𝑧 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑧) ⊆ 𝐴}))
137136expr 644 . . . . . . 7 (((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ 𝑟 ∈ ℝ+) → (((𝑤𝑟)(,)(𝑤 + 𝑟)) ⊆ 𝐴𝑤 ([,] “ {𝑧 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑧) ⊆ 𝐴})))
13851, 137sylbid 230 . . . . . 6 (((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) ∧ 𝑟 ∈ ℝ+) → ((𝑤(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝐴𝑤 ([,] “ {𝑧 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑧) ⊆ 𝐴})))
139138rexlimdva 3133 . . . . 5 ((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) → (∃𝑟 ∈ ℝ+ (𝑤(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ 𝐴𝑤 ([,] “ {𝑧 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑧) ⊆ 𝐴})))
14043, 139mpd 15 . . . 4 ((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑤𝐴) → 𝑤 ([,] “ {𝑧 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑧) ⊆ 𝐴}))
141140ex 449 . . 3 (𝐴 ∈ (topGen‘ran (,)) → (𝑤𝐴𝑤 ([,] “ {𝑧 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑧) ⊆ 𝐴})))
142141ssrdv 3715 . 2 (𝐴 ∈ (topGen‘ran (,)) → 𝐴 ([,] “ {𝑧 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑧) ⊆ 𝐴}))
14337, 142eqssd 3726 1 (𝐴 ∈ (topGen‘ran (,)) → ([,] “ {𝑧 ∈ ran (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩) ∣ ([,]‘𝑧) ⊆ 𝐴}) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1072   = wceq 1596  wcel 2103  wral 3014  wrex 3015  {crab 3018  cin 3679  wss 3680  𝒫 cpw 4266  cop 4291   cuni 4544   class class class wbr 4760   × cxp 5216  dom cdm 5218  ran crn 5219  cres 5220  cima 5221  ccom 5222  Fun wfun 5995   Fn wfn 5996  wf 5997  cfv 6001  (class class class)co 6765  cmpt2 6767  cr 10048  0cc0 10049  1c1 10050   + caddc 10052   · cmul 10054  *cxr 10186   < clt 10187  cle 10188  cmin 10379   / cdiv 10797  cn 11133  2c2 11183  0cn0 11405  cz 11490  +crp 11946  (,)cioo 12289  [,]cicc 12292  cfl 12706  cexp 12975  abscabs 14094  topGenctg 16221  ∞Metcxmt 19854  ballcbl 19856  MetOpencmopn 19859
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1835  ax-4 1850  ax-5 1952  ax-6 2018  ax-7 2054  ax-8 2105  ax-9 2112  ax-10 2132  ax-11 2147  ax-12 2160  ax-13 2355  ax-ext 2704  ax-sep 4889  ax-nul 4897  ax-pow 4948  ax-pr 5011  ax-un 7066  ax-cnex 10105  ax-resscn 10106  ax-1cn 10107  ax-icn 10108  ax-addcl 10109  ax-addrcl 10110  ax-mulcl 10111  ax-mulrcl 10112  ax-mulcom 10113  ax-addass 10114  ax-mulass 10115  ax-distr 10116  ax-i2m1 10117  ax-1ne0 10118  ax-1rid 10119  ax-rnegex 10120  ax-rrecex 10121  ax-cnre 10122  ax-pre-lttri 10123  ax-pre-lttrn 10124  ax-pre-ltadd 10125  ax-pre-mulgt0 10126  ax-pre-sup 10127
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1599  df-ex 1818  df-nf 1823  df-sb 2011  df-eu 2575  df-mo 2576  df-clab 2711  df-cleq 2717  df-clel 2720  df-nfc 2855  df-ne 2897  df-nel 3000  df-ral 3019  df-rex 3020  df-reu 3021  df-rmo 3022  df-rab 3023  df-v 3306  df-sbc 3542  df-csb 3640  df-dif 3683  df-un 3685  df-in 3687  df-ss 3694  df-pss 3696  df-nul 4024  df-if 4195  df-pw 4268  df-sn 4286  df-pr 4288  df-tp 4290  df-op 4292  df-uni 4545  df-iun 4630  df-br 4761  df-opab 4821  df-mpt 4838  df-tr 4861  df-id 5128  df-eprel 5133  df-po 5139  df-so 5140  df-fr 5177  df-we 5179  df-xp 5224  df-rel 5225  df-cnv 5226  df-co 5227  df-dm 5228  df-rn 5229  df-res 5230  df-ima 5231  df-pred 5793  df-ord 5839  df-on 5840  df-lim 5841  df-suc 5842  df-iota 5964  df-fun 6003  df-fn 6004  df-f 6005  df-f1 6006  df-fo 6007  df-f1o 6008  df-fv 6009  df-riota 6726  df-ov 6768  df-oprab 6769  df-mpt2 6770  df-om 7183  df-1st 7285  df-2nd 7286  df-wrecs 7527  df-recs 7588  df-rdg 7626  df-er 7862  df-map 7976  df-en 8073  df-dom 8074  df-sdom 8075  df-sup 8464  df-inf 8465  df-pnf 10189  df-mnf 10190  df-xr 10191  df-ltxr 10192  df-le 10193  df-sub 10381  df-neg 10382  df-div 10798  df-nn 11134  df-2 11192  df-3 11193  df-n0 11406  df-z 11491  df-uz 11801  df-q 11903  df-rp 11947  df-xneg 12060  df-xadd 12061  df-xmul 12062  df-ioo 12293  df-icc 12296  df-fl 12708  df-seq 12917  df-exp 12976  df-cj 13959  df-re 13960  df-im 13961  df-sqrt 14095  df-abs 14096  df-topgen 16227  df-psmet 19861  df-xmet 19862  df-met 19863  df-bl 19864  df-mopn 19865  df-top 20822  df-topon 20839  df-bases 20873
This theorem is referenced by:  mblfinlem1  33678  mblfinlem2  33679
  Copyright terms: Public domain W3C validator