![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > opncldf1 | Structured version Visualization version GIF version |
Description: A bijection useful for converting statements about open sets to statements about closed sets and vice versa. (Contributed by Jeff Hankins, 27-Aug-2009.) (Proof shortened by Mario Carneiro, 1-Sep-2015.) |
Ref | Expression |
---|---|
opncldf.1 | ⊢ 𝑋 = ∪ 𝐽 |
opncldf.2 | ⊢ 𝐹 = (𝑢 ∈ 𝐽 ↦ (𝑋 ∖ 𝑢)) |
Ref | Expression |
---|---|
opncldf1 | ⊢ (𝐽 ∈ Top → (𝐹:𝐽–1-1-onto→(Clsd‘𝐽) ∧ ◡𝐹 = (𝑥 ∈ (Clsd‘𝐽) ↦ (𝑋 ∖ 𝑥)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opncldf.2 | . 2 ⊢ 𝐹 = (𝑢 ∈ 𝐽 ↦ (𝑋 ∖ 𝑢)) | |
2 | opncldf.1 | . . 3 ⊢ 𝑋 = ∪ 𝐽 | |
3 | 2 | opncld 20885 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑢 ∈ 𝐽) → (𝑋 ∖ 𝑢) ∈ (Clsd‘𝐽)) |
4 | 2 | cldopn 20883 | . . 3 ⊢ (𝑥 ∈ (Clsd‘𝐽) → (𝑋 ∖ 𝑥) ∈ 𝐽) |
5 | 4 | adantl 481 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑥 ∈ (Clsd‘𝐽)) → (𝑋 ∖ 𝑥) ∈ 𝐽) |
6 | 2 | cldss 20881 | . . . . . . 7 ⊢ (𝑥 ∈ (Clsd‘𝐽) → 𝑥 ⊆ 𝑋) |
7 | 6 | ad2antll 765 | . . . . . 6 ⊢ ((𝐽 ∈ Top ∧ (𝑢 ∈ 𝐽 ∧ 𝑥 ∈ (Clsd‘𝐽))) → 𝑥 ⊆ 𝑋) |
8 | dfss4 3891 | . . . . . 6 ⊢ (𝑥 ⊆ 𝑋 ↔ (𝑋 ∖ (𝑋 ∖ 𝑥)) = 𝑥) | |
9 | 7, 8 | sylib 208 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ (𝑢 ∈ 𝐽 ∧ 𝑥 ∈ (Clsd‘𝐽))) → (𝑋 ∖ (𝑋 ∖ 𝑥)) = 𝑥) |
10 | 9 | eqcomd 2657 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ (𝑢 ∈ 𝐽 ∧ 𝑥 ∈ (Clsd‘𝐽))) → 𝑥 = (𝑋 ∖ (𝑋 ∖ 𝑥))) |
11 | difeq2 3755 | . . . . 5 ⊢ (𝑢 = (𝑋 ∖ 𝑥) → (𝑋 ∖ 𝑢) = (𝑋 ∖ (𝑋 ∖ 𝑥))) | |
12 | 11 | eqeq2d 2661 | . . . 4 ⊢ (𝑢 = (𝑋 ∖ 𝑥) → (𝑥 = (𝑋 ∖ 𝑢) ↔ 𝑥 = (𝑋 ∖ (𝑋 ∖ 𝑥)))) |
13 | 10, 12 | syl5ibrcom 237 | . . 3 ⊢ ((𝐽 ∈ Top ∧ (𝑢 ∈ 𝐽 ∧ 𝑥 ∈ (Clsd‘𝐽))) → (𝑢 = (𝑋 ∖ 𝑥) → 𝑥 = (𝑋 ∖ 𝑢))) |
14 | 2 | eltopss 20760 | . . . . . . 7 ⊢ ((𝐽 ∈ Top ∧ 𝑢 ∈ 𝐽) → 𝑢 ⊆ 𝑋) |
15 | 14 | adantrr 753 | . . . . . 6 ⊢ ((𝐽 ∈ Top ∧ (𝑢 ∈ 𝐽 ∧ 𝑥 ∈ (Clsd‘𝐽))) → 𝑢 ⊆ 𝑋) |
16 | dfss4 3891 | . . . . . 6 ⊢ (𝑢 ⊆ 𝑋 ↔ (𝑋 ∖ (𝑋 ∖ 𝑢)) = 𝑢) | |
17 | 15, 16 | sylib 208 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ (𝑢 ∈ 𝐽 ∧ 𝑥 ∈ (Clsd‘𝐽))) → (𝑋 ∖ (𝑋 ∖ 𝑢)) = 𝑢) |
18 | 17 | eqcomd 2657 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ (𝑢 ∈ 𝐽 ∧ 𝑥 ∈ (Clsd‘𝐽))) → 𝑢 = (𝑋 ∖ (𝑋 ∖ 𝑢))) |
19 | difeq2 3755 | . . . . 5 ⊢ (𝑥 = (𝑋 ∖ 𝑢) → (𝑋 ∖ 𝑥) = (𝑋 ∖ (𝑋 ∖ 𝑢))) | |
20 | 19 | eqeq2d 2661 | . . . 4 ⊢ (𝑥 = (𝑋 ∖ 𝑢) → (𝑢 = (𝑋 ∖ 𝑥) ↔ 𝑢 = (𝑋 ∖ (𝑋 ∖ 𝑢)))) |
21 | 18, 20 | syl5ibrcom 237 | . . 3 ⊢ ((𝐽 ∈ Top ∧ (𝑢 ∈ 𝐽 ∧ 𝑥 ∈ (Clsd‘𝐽))) → (𝑥 = (𝑋 ∖ 𝑢) → 𝑢 = (𝑋 ∖ 𝑥))) |
22 | 13, 21 | impbid 202 | . 2 ⊢ ((𝐽 ∈ Top ∧ (𝑢 ∈ 𝐽 ∧ 𝑥 ∈ (Clsd‘𝐽))) → (𝑢 = (𝑋 ∖ 𝑥) ↔ 𝑥 = (𝑋 ∖ 𝑢))) |
23 | 1, 3, 5, 22 | f1ocnv2d 6928 | 1 ⊢ (𝐽 ∈ Top → (𝐹:𝐽–1-1-onto→(Clsd‘𝐽) ∧ ◡𝐹 = (𝑥 ∈ (Clsd‘𝐽) ↦ (𝑋 ∖ 𝑥)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1523 ∈ wcel 2030 ∖ cdif 3604 ⊆ wss 3607 ∪ cuni 4468 ↦ cmpt 4762 ◡ccnv 5142 –1-1-onto→wf1o 5925 ‘cfv 5926 Topctop 20746 Clsdccld 20868 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-sbc 3469 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-br 4686 df-opab 4746 df-mpt 4763 df-id 5053 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-top 20747 df-cld 20871 |
This theorem is referenced by: opncldf3 20938 cmpfi 21259 |
Copyright terms: Public domain | W3C validator |