Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ople0 Structured version   Visualization version   GIF version

Theorem ople0 34977
Description: An element less than or equal to zero equals zero. (chle0 28611 analog.) (Contributed by NM, 21-Oct-2011.)
Hypotheses
Ref Expression
op0le.b 𝐵 = (Base‘𝐾)
op0le.l = (le‘𝐾)
op0le.z 0 = (0.‘𝐾)
Assertion
Ref Expression
ople0 ((𝐾 ∈ OP ∧ 𝑋𝐵) → (𝑋 0𝑋 = 0 ))

Proof of Theorem ople0
StepHypRef Expression
1 op0le.b . . . 4 𝐵 = (Base‘𝐾)
2 op0le.l . . . 4 = (le‘𝐾)
3 op0le.z . . . 4 0 = (0.‘𝐾)
41, 2, 3op0le 34976 . . 3 ((𝐾 ∈ OP ∧ 𝑋𝐵) → 0 𝑋)
54biantrud 529 . 2 ((𝐾 ∈ OP ∧ 𝑋𝐵) → (𝑋 0 ↔ (𝑋 00 𝑋)))
6 opposet 34971 . . . 4 (𝐾 ∈ OP → 𝐾 ∈ Poset)
76adantr 472 . . 3 ((𝐾 ∈ OP ∧ 𝑋𝐵) → 𝐾 ∈ Poset)
8 simpr 479 . . 3 ((𝐾 ∈ OP ∧ 𝑋𝐵) → 𝑋𝐵)
91, 3op0cl 34974 . . . 4 (𝐾 ∈ OP → 0𝐵)
109adantr 472 . . 3 ((𝐾 ∈ OP ∧ 𝑋𝐵) → 0𝐵)
111, 2posasymb 17153 . . 3 ((𝐾 ∈ Poset ∧ 𝑋𝐵0𝐵) → ((𝑋 00 𝑋) ↔ 𝑋 = 0 ))
127, 8, 10, 11syl3anc 1477 . 2 ((𝐾 ∈ OP ∧ 𝑋𝐵) → ((𝑋 00 𝑋) ↔ 𝑋 = 0 ))
135, 12bitrd 268 1 ((𝐾 ∈ OP ∧ 𝑋𝐵) → (𝑋 0𝑋 = 0 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1632  wcel 2139   class class class wbr 4804  cfv 6049  Basecbs 16059  lecple 16150  Posetcpo 17141  0.cp0 17238  OPcops 34962
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-preset 17129  df-poset 17147  df-glb 17176  df-p0 17240  df-oposet 34966
This theorem is referenced by:  lub0N  34979  opoc1  34992  atlatmstc  35109  cvrat4  35232  lhpocnle  35805  cdleme22b  36131  tendoid  36563  tendoex  36765
  Copyright terms: Public domain W3C validator