![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ople0 | Structured version Visualization version GIF version |
Description: An element less than or equal to zero equals zero. (chle0 28611 analog.) (Contributed by NM, 21-Oct-2011.) |
Ref | Expression |
---|---|
op0le.b | ⊢ 𝐵 = (Base‘𝐾) |
op0le.l | ⊢ ≤ = (le‘𝐾) |
op0le.z | ⊢ 0 = (0.‘𝐾) |
Ref | Expression |
---|---|
ople0 | ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → (𝑋 ≤ 0 ↔ 𝑋 = 0 )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | op0le.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
2 | op0le.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
3 | op0le.z | . . . 4 ⊢ 0 = (0.‘𝐾) | |
4 | 1, 2, 3 | op0le 34976 | . . 3 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → 0 ≤ 𝑋) |
5 | 4 | biantrud 529 | . 2 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → (𝑋 ≤ 0 ↔ (𝑋 ≤ 0 ∧ 0 ≤ 𝑋))) |
6 | opposet 34971 | . . . 4 ⊢ (𝐾 ∈ OP → 𝐾 ∈ Poset) | |
7 | 6 | adantr 472 | . . 3 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → 𝐾 ∈ Poset) |
8 | simpr 479 | . . 3 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
9 | 1, 3 | op0cl 34974 | . . . 4 ⊢ (𝐾 ∈ OP → 0 ∈ 𝐵) |
10 | 9 | adantr 472 | . . 3 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → 0 ∈ 𝐵) |
11 | 1, 2 | posasymb 17153 | . . 3 ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 0 ∈ 𝐵) → ((𝑋 ≤ 0 ∧ 0 ≤ 𝑋) ↔ 𝑋 = 0 )) |
12 | 7, 8, 10, 11 | syl3anc 1477 | . 2 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → ((𝑋 ≤ 0 ∧ 0 ≤ 𝑋) ↔ 𝑋 = 0 )) |
13 | 5, 12 | bitrd 268 | 1 ⊢ ((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵) → (𝑋 ≤ 0 ↔ 𝑋 = 0 )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1632 ∈ wcel 2139 class class class wbr 4804 ‘cfv 6049 Basecbs 16059 lecple 16150 Posetcpo 17141 0.cp0 17238 OPcops 34962 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-reu 3057 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6774 df-ov 6816 df-preset 17129 df-poset 17147 df-glb 17176 df-p0 17240 df-oposet 34966 |
This theorem is referenced by: lub0N 34979 opoc1 34992 atlatmstc 35109 cvrat4 35232 lhpocnle 35805 cdleme22b 36131 tendoid 36563 tendoex 36765 |
Copyright terms: Public domain | W3C validator |