![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > opiedgfvi | Structured version Visualization version GIF version |
Description: The set of indexed edges of a graph represented as an ordered pair of vertices and indexed edges as function value. (Contributed by AV, 4-Mar-2021.) |
Ref | Expression |
---|---|
opvtxfvi.v | ⊢ 𝑉 ∈ V |
opvtxfvi.e | ⊢ 𝐸 ∈ V |
Ref | Expression |
---|---|
opiedgfvi | ⊢ (iEdg‘〈𝑉, 𝐸〉) = 𝐸 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opvtxfvi.v | . 2 ⊢ 𝑉 ∈ V | |
2 | opvtxfvi.e | . 2 ⊢ 𝐸 ∈ V | |
3 | opiedgfv 26108 | . 2 ⊢ ((𝑉 ∈ V ∧ 𝐸 ∈ V) → (iEdg‘〈𝑉, 𝐸〉) = 𝐸) | |
4 | 1, 2, 3 | mp2an 672 | 1 ⊢ (iEdg‘〈𝑉, 𝐸〉) = 𝐸 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1631 ∈ wcel 2145 Vcvv 3351 〈cop 4323 ‘cfv 6030 iEdgciedg 26096 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4916 ax-nul 4924 ax-pow 4975 ax-pr 5035 ax-un 7100 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3353 df-sbc 3588 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4227 df-sn 4318 df-pr 4320 df-op 4324 df-uni 4576 df-br 4788 df-opab 4848 df-mpt 4865 df-id 5158 df-xp 5256 df-rel 5257 df-cnv 5258 df-co 5259 df-dm 5260 df-rn 5261 df-iota 5993 df-fun 6032 df-fv 6038 df-2nd 7320 df-iedg 26098 |
This theorem is referenced by: iedgvalsnop 26155 vtxdgop 26601 vtxdginducedm1lem1 26670 finsumvtxdg2size 26681 eupth2lem3 27416 konigsberglem1 27432 konigsberglem2 27433 konigsberglem3 27434 |
Copyright terms: Public domain | W3C validator |