![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > opidon2OLD | Structured version Visualization version GIF version |
Description: Obsolete version of mndpfo 17361 as of 23-Jan-2020. An operation with a left and right identity element is onto. (Contributed by FL, 2-Nov-2009.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
opidon2OLD.1 | ⊢ 𝑋 = ran 𝐺 |
Ref | Expression |
---|---|
opidon2OLD | ⊢ (𝐺 ∈ (Magma ∩ ExId ) → 𝐺:(𝑋 × 𝑋)–onto→𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2651 | . . 3 ⊢ dom dom 𝐺 = dom dom 𝐺 | |
2 | 1 | opidonOLD 33781 | . 2 ⊢ (𝐺 ∈ (Magma ∩ ExId ) → 𝐺:(dom dom 𝐺 × dom dom 𝐺)–onto→dom dom 𝐺) |
3 | opidon2OLD.1 | . . . 4 ⊢ 𝑋 = ran 𝐺 | |
4 | forn 6156 | . . . 4 ⊢ (𝐺:(dom dom 𝐺 × dom dom 𝐺)–onto→dom dom 𝐺 → ran 𝐺 = dom dom 𝐺) | |
5 | 3, 4 | syl5req 2698 | . . 3 ⊢ (𝐺:(dom dom 𝐺 × dom dom 𝐺)–onto→dom dom 𝐺 → dom dom 𝐺 = 𝑋) |
6 | xpeq12 5168 | . . . . . . 7 ⊢ ((dom dom 𝐺 = 𝑋 ∧ dom dom 𝐺 = 𝑋) → (dom dom 𝐺 × dom dom 𝐺) = (𝑋 × 𝑋)) | |
7 | 6 | anidms 678 | . . . . . 6 ⊢ (dom dom 𝐺 = 𝑋 → (dom dom 𝐺 × dom dom 𝐺) = (𝑋 × 𝑋)) |
8 | foeq2 6150 | . . . . . 6 ⊢ ((dom dom 𝐺 × dom dom 𝐺) = (𝑋 × 𝑋) → (𝐺:(dom dom 𝐺 × dom dom 𝐺)–onto→dom dom 𝐺 ↔ 𝐺:(𝑋 × 𝑋)–onto→dom dom 𝐺)) | |
9 | 7, 8 | syl 17 | . . . . 5 ⊢ (dom dom 𝐺 = 𝑋 → (𝐺:(dom dom 𝐺 × dom dom 𝐺)–onto→dom dom 𝐺 ↔ 𝐺:(𝑋 × 𝑋)–onto→dom dom 𝐺)) |
10 | foeq3 6151 | . . . . 5 ⊢ (dom dom 𝐺 = 𝑋 → (𝐺:(𝑋 × 𝑋)–onto→dom dom 𝐺 ↔ 𝐺:(𝑋 × 𝑋)–onto→𝑋)) | |
11 | 9, 10 | bitrd 268 | . . . 4 ⊢ (dom dom 𝐺 = 𝑋 → (𝐺:(dom dom 𝐺 × dom dom 𝐺)–onto→dom dom 𝐺 ↔ 𝐺:(𝑋 × 𝑋)–onto→𝑋)) |
12 | 11 | biimpd 219 | . . 3 ⊢ (dom dom 𝐺 = 𝑋 → (𝐺:(dom dom 𝐺 × dom dom 𝐺)–onto→dom dom 𝐺 → 𝐺:(𝑋 × 𝑋)–onto→𝑋)) |
13 | 5, 12 | mpcom 38 | . 2 ⊢ (𝐺:(dom dom 𝐺 × dom dom 𝐺)–onto→dom dom 𝐺 → 𝐺:(𝑋 × 𝑋)–onto→𝑋) |
14 | 2, 13 | syl 17 | 1 ⊢ (𝐺 ∈ (Magma ∩ ExId ) → 𝐺:(𝑋 × 𝑋)–onto→𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 = wceq 1523 ∈ wcel 2030 ∩ cin 3606 × cxp 5141 dom cdm 5143 ran crn 5144 –onto→wfo 5924 ExId cexid 33773 Magmacmagm 33777 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pr 4936 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-id 5053 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-fo 5932 df-fv 5934 df-ov 6693 df-exid 33774 df-mgmOLD 33778 |
This theorem is referenced by: exidreslem 33806 |
Copyright terms: Public domain | W3C validator |