![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > opid | Structured version Visualization version GIF version |
Description: The ordered pair 〈𝐴, 𝐴〉 in Kuratowski's representation. Inference form of opidg 4558. (Contributed by FL, 28-Dec-2011.) (Prove shortened by AV, 16-Feb-2022.) (Avoid depending on this detail.) |
Ref | Expression |
---|---|
opid.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
opid | ⊢ 〈𝐴, 𝐴〉 = {{𝐴}} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opid.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | opidg 4558 | . 2 ⊢ (𝐴 ∈ V → 〈𝐴, 𝐴〉 = {{𝐴}}) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ 〈𝐴, 𝐴〉 = {{𝐴}} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1631 ∈ wcel 2145 Vcvv 3351 {csn 4316 〈cop 4322 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-v 3353 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4226 df-sn 4317 df-pr 4319 df-op 4323 |
This theorem is referenced by: dmsnsnsn 5755 funopg 6065 vtxval3sn 26156 iedgval3sn 26157 |
Copyright terms: Public domain | W3C validator |