Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  opi2 Structured version   Visualization version   GIF version

Theorem opi2 5064
 Description: One of the two elements of an ordered pair. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 26-Apr-2015.) (Avoid depending on this detail.)
Hypotheses
Ref Expression
opi1.1 𝐴 ∈ V
opi1.2 𝐵 ∈ V
Assertion
Ref Expression
opi2 {𝐴, 𝐵} ∈ ⟨𝐴, 𝐵

Proof of Theorem opi2
StepHypRef Expression
1 prex 5036 . . 3 {𝐴, 𝐵} ∈ V
21prid2 4431 . 2 {𝐴, 𝐵} ∈ {{𝐴}, {𝐴, 𝐵}}
3 opi1.1 . . 3 𝐴 ∈ V
4 opi1.2 . . 3 𝐵 ∈ V
53, 4dfop 4535 . 2 𝐴, 𝐵⟩ = {{𝐴}, {𝐴, 𝐵}}
62, 5eleqtrri 2847 1 {𝐴, 𝐵} ∈ ⟨𝐴, 𝐵
 Colors of variables: wff setvar class Syntax hints:   ∈ wcel 2143  Vcvv 3348  {csn 4313  {cpr 4315  ⟨cop 4319 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1868  ax-4 1883  ax-5 1989  ax-6 2055  ax-7 2091  ax-9 2152  ax-10 2172  ax-11 2188  ax-12 2201  ax-13 2406  ax-ext 2749  ax-sep 4911  ax-nul 4919  ax-pr 5033 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1071  df-tru 1632  df-ex 1851  df-nf 1856  df-sb 2048  df-clab 2756  df-cleq 2762  df-clel 2765  df-nfc 2900  df-v 3350  df-dif 3723  df-un 3725  df-in 3727  df-ss 3734  df-nul 4061  df-if 4223  df-sn 4314  df-pr 4316  df-op 4320 This theorem is referenced by:  opeluu  5065  uniopel  5108  elvvuni  5318
 Copyright terms: Public domain W3C validator