MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opi1 Structured version   Visualization version   GIF version

Theorem opi1 5064
Description: One of the two elements in an ordered pair. (Contributed by NM, 15-Jul-1993.) (Revised by Mario Carneiro, 26-Apr-2015.) (Avoid depending on this detail.)
Hypotheses
Ref Expression
opi1.1 𝐴 ∈ V
opi1.2 𝐵 ∈ V
Assertion
Ref Expression
opi1 {𝐴} ∈ ⟨𝐴, 𝐵

Proof of Theorem opi1
StepHypRef Expression
1 snex 5036 . . 3 {𝐴} ∈ V
21prid1 4433 . 2 {𝐴} ∈ {{𝐴}, {𝐴, 𝐵}}
3 opi1.1 . . 3 𝐴 ∈ V
4 opi1.2 . . 3 𝐵 ∈ V
53, 4dfop 4538 . 2 𝐴, 𝐵⟩ = {{𝐴}, {𝐴, 𝐵}}
62, 5eleqtrri 2849 1 {𝐴} ∈ ⟨𝐴, 𝐵
Colors of variables: wff setvar class
Syntax hints:  wcel 2145  Vcvv 3351  {csn 4316  {cpr 4318  cop 4322
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pr 5034
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 835  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-v 3353  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4226  df-sn 4317  df-pr 4319  df-op 4323
This theorem is referenced by:  opth1  5071  opth  5072
  Copyright terms: Public domain W3C validator