![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > opfi1uzind | Structured version Visualization version GIF version |
Description: Properties of an ordered pair with a finite first component with at least L elements, proven by finite induction on the size of the first component. This theorem can be applied for graphs (represented as orderd pairs of vertices and edges) with a finite number of vertices, usually with 𝐿 = 0 (see opfi1ind 13476) or 𝐿 = 1. (Contributed by AV, 22-Oct-2020.) (Revised by AV, 28-Mar-2021.) |
Ref | Expression |
---|---|
opfi1uzind.e | ⊢ 𝐸 ∈ V |
opfi1uzind.f | ⊢ 𝐹 ∈ V |
opfi1uzind.l | ⊢ 𝐿 ∈ ℕ0 |
opfi1uzind.1 | ⊢ ((𝑣 = 𝑉 ∧ 𝑒 = 𝐸) → (𝜓 ↔ 𝜑)) |
opfi1uzind.2 | ⊢ ((𝑣 = 𝑤 ∧ 𝑒 = 𝑓) → (𝜓 ↔ 𝜃)) |
opfi1uzind.3 | ⊢ ((〈𝑣, 𝑒〉 ∈ 𝐺 ∧ 𝑛 ∈ 𝑣) → 〈(𝑣 ∖ {𝑛}), 𝐹〉 ∈ 𝐺) |
opfi1uzind.4 | ⊢ ((𝑤 = (𝑣 ∖ {𝑛}) ∧ 𝑓 = 𝐹) → (𝜃 ↔ 𝜒)) |
opfi1uzind.base | ⊢ ((〈𝑣, 𝑒〉 ∈ 𝐺 ∧ (♯‘𝑣) = 𝐿) → 𝜓) |
opfi1uzind.step | ⊢ ((((𝑦 + 1) ∈ ℕ0 ∧ (〈𝑣, 𝑒〉 ∈ 𝐺 ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛 ∈ 𝑣)) ∧ 𝜒) → 𝜓) |
Ref | Expression |
---|---|
opfi1uzind | ⊢ ((〈𝑉, 𝐸〉 ∈ 𝐺 ∧ 𝑉 ∈ Fin ∧ 𝐿 ≤ (♯‘𝑉)) → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opfi1uzind.e | . . . . . . 7 ⊢ 𝐸 ∈ V | |
2 | 1 | a1i 11 | . . . . . 6 ⊢ (𝑎 = 𝑉 → 𝐸 ∈ V) |
3 | opeq12 4555 | . . . . . . 7 ⊢ ((𝑎 = 𝑉 ∧ 𝑏 = 𝐸) → 〈𝑎, 𝑏〉 = 〈𝑉, 𝐸〉) | |
4 | 3 | eleq1d 2824 | . . . . . 6 ⊢ ((𝑎 = 𝑉 ∧ 𝑏 = 𝐸) → (〈𝑎, 𝑏〉 ∈ 𝐺 ↔ 〈𝑉, 𝐸〉 ∈ 𝐺)) |
5 | 2, 4 | sbcied 3613 | . . . . 5 ⊢ (𝑎 = 𝑉 → ([𝐸 / 𝑏]〈𝑎, 𝑏〉 ∈ 𝐺 ↔ 〈𝑉, 𝐸〉 ∈ 𝐺)) |
6 | 5 | sbcieg 3609 | . . . 4 ⊢ (𝑉 ∈ Fin → ([𝑉 / 𝑎][𝐸 / 𝑏]〈𝑎, 𝑏〉 ∈ 𝐺 ↔ 〈𝑉, 𝐸〉 ∈ 𝐺)) |
7 | 6 | biimparc 505 | . . 3 ⊢ ((〈𝑉, 𝐸〉 ∈ 𝐺 ∧ 𝑉 ∈ Fin) → [𝑉 / 𝑎][𝐸 / 𝑏]〈𝑎, 𝑏〉 ∈ 𝐺) |
8 | 7 | 3adant3 1127 | . 2 ⊢ ((〈𝑉, 𝐸〉 ∈ 𝐺 ∧ 𝑉 ∈ Fin ∧ 𝐿 ≤ (♯‘𝑉)) → [𝑉 / 𝑎][𝐸 / 𝑏]〈𝑎, 𝑏〉 ∈ 𝐺) |
9 | opfi1uzind.f | . . 3 ⊢ 𝐹 ∈ V | |
10 | opfi1uzind.l | . . 3 ⊢ 𝐿 ∈ ℕ0 | |
11 | opfi1uzind.1 | . . 3 ⊢ ((𝑣 = 𝑉 ∧ 𝑒 = 𝐸) → (𝜓 ↔ 𝜑)) | |
12 | opfi1uzind.2 | . . 3 ⊢ ((𝑣 = 𝑤 ∧ 𝑒 = 𝑓) → (𝜓 ↔ 𝜃)) | |
13 | vex 3343 | . . . . . 6 ⊢ 𝑣 ∈ V | |
14 | vex 3343 | . . . . . 6 ⊢ 𝑒 ∈ V | |
15 | opeq12 4555 | . . . . . . 7 ⊢ ((𝑎 = 𝑣 ∧ 𝑏 = 𝑒) → 〈𝑎, 𝑏〉 = 〈𝑣, 𝑒〉) | |
16 | 15 | eleq1d 2824 | . . . . . 6 ⊢ ((𝑎 = 𝑣 ∧ 𝑏 = 𝑒) → (〈𝑎, 𝑏〉 ∈ 𝐺 ↔ 〈𝑣, 𝑒〉 ∈ 𝐺)) |
17 | 13, 14, 16 | sbc2ie 3646 | . . . . 5 ⊢ ([𝑣 / 𝑎][𝑒 / 𝑏]〈𝑎, 𝑏〉 ∈ 𝐺 ↔ 〈𝑣, 𝑒〉 ∈ 𝐺) |
18 | opfi1uzind.3 | . . . . 5 ⊢ ((〈𝑣, 𝑒〉 ∈ 𝐺 ∧ 𝑛 ∈ 𝑣) → 〈(𝑣 ∖ {𝑛}), 𝐹〉 ∈ 𝐺) | |
19 | 17, 18 | sylanb 490 | . . . 4 ⊢ (([𝑣 / 𝑎][𝑒 / 𝑏]〈𝑎, 𝑏〉 ∈ 𝐺 ∧ 𝑛 ∈ 𝑣) → 〈(𝑣 ∖ {𝑛}), 𝐹〉 ∈ 𝐺) |
20 | 13 | difexi 4961 | . . . . 5 ⊢ (𝑣 ∖ {𝑛}) ∈ V |
21 | opeq12 4555 | . . . . . 6 ⊢ ((𝑎 = (𝑣 ∖ {𝑛}) ∧ 𝑏 = 𝐹) → 〈𝑎, 𝑏〉 = 〈(𝑣 ∖ {𝑛}), 𝐹〉) | |
22 | 21 | eleq1d 2824 | . . . . 5 ⊢ ((𝑎 = (𝑣 ∖ {𝑛}) ∧ 𝑏 = 𝐹) → (〈𝑎, 𝑏〉 ∈ 𝐺 ↔ 〈(𝑣 ∖ {𝑛}), 𝐹〉 ∈ 𝐺)) |
23 | 20, 9, 22 | sbc2ie 3646 | . . . 4 ⊢ ([(𝑣 ∖ {𝑛}) / 𝑎][𝐹 / 𝑏]〈𝑎, 𝑏〉 ∈ 𝐺 ↔ 〈(𝑣 ∖ {𝑛}), 𝐹〉 ∈ 𝐺) |
24 | 19, 23 | sylibr 224 | . . 3 ⊢ (([𝑣 / 𝑎][𝑒 / 𝑏]〈𝑎, 𝑏〉 ∈ 𝐺 ∧ 𝑛 ∈ 𝑣) → [(𝑣 ∖ {𝑛}) / 𝑎][𝐹 / 𝑏]〈𝑎, 𝑏〉 ∈ 𝐺) |
25 | opfi1uzind.4 | . . 3 ⊢ ((𝑤 = (𝑣 ∖ {𝑛}) ∧ 𝑓 = 𝐹) → (𝜃 ↔ 𝜒)) | |
26 | opfi1uzind.base | . . . 4 ⊢ ((〈𝑣, 𝑒〉 ∈ 𝐺 ∧ (♯‘𝑣) = 𝐿) → 𝜓) | |
27 | 17, 26 | sylanb 490 | . . 3 ⊢ (([𝑣 / 𝑎][𝑒 / 𝑏]〈𝑎, 𝑏〉 ∈ 𝐺 ∧ (♯‘𝑣) = 𝐿) → 𝜓) |
28 | 17 | 3anbi1i 1161 | . . . . 5 ⊢ (([𝑣 / 𝑎][𝑒 / 𝑏]〈𝑎, 𝑏〉 ∈ 𝐺 ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛 ∈ 𝑣) ↔ (〈𝑣, 𝑒〉 ∈ 𝐺 ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛 ∈ 𝑣)) |
29 | 28 | anbi2i 732 | . . . 4 ⊢ (((𝑦 + 1) ∈ ℕ0 ∧ ([𝑣 / 𝑎][𝑒 / 𝑏]〈𝑎, 𝑏〉 ∈ 𝐺 ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛 ∈ 𝑣)) ↔ ((𝑦 + 1) ∈ ℕ0 ∧ (〈𝑣, 𝑒〉 ∈ 𝐺 ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛 ∈ 𝑣))) |
30 | opfi1uzind.step | . . . 4 ⊢ ((((𝑦 + 1) ∈ ℕ0 ∧ (〈𝑣, 𝑒〉 ∈ 𝐺 ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛 ∈ 𝑣)) ∧ 𝜒) → 𝜓) | |
31 | 29, 30 | sylanb 490 | . . 3 ⊢ ((((𝑦 + 1) ∈ ℕ0 ∧ ([𝑣 / 𝑎][𝑒 / 𝑏]〈𝑎, 𝑏〉 ∈ 𝐺 ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛 ∈ 𝑣)) ∧ 𝜒) → 𝜓) |
32 | 9, 10, 11, 12, 24, 25, 27, 31 | fi1uzind 13471 | . 2 ⊢ (([𝑉 / 𝑎][𝐸 / 𝑏]〈𝑎, 𝑏〉 ∈ 𝐺 ∧ 𝑉 ∈ Fin ∧ 𝐿 ≤ (♯‘𝑉)) → 𝜑) |
33 | 8, 32 | syld3an1 1517 | 1 ⊢ ((〈𝑉, 𝐸〉 ∈ 𝐺 ∧ 𝑉 ∈ Fin ∧ 𝐿 ≤ (♯‘𝑉)) → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 ∧ w3a 1072 = wceq 1632 ∈ wcel 2139 Vcvv 3340 [wsbc 3576 ∖ cdif 3712 {csn 4321 〈cop 4327 class class class wbr 4804 ‘cfv 6049 (class class class)co 6813 Fincfn 8121 1c1 10129 + caddc 10131 ≤ cle 10267 ℕ0cn0 11484 ♯chash 13311 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 ax-cnex 10184 ax-resscn 10185 ax-1cn 10186 ax-icn 10187 ax-addcl 10188 ax-addrcl 10189 ax-mulcl 10190 ax-mulrcl 10191 ax-mulcom 10192 ax-addass 10193 ax-mulass 10194 ax-distr 10195 ax-i2m1 10196 ax-1ne0 10197 ax-1rid 10198 ax-rnegex 10199 ax-rrecex 10200 ax-cnre 10201 ax-pre-lttri 10202 ax-pre-lttrn 10203 ax-pre-ltadd 10204 ax-pre-mulgt0 10205 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-int 4628 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6774 df-ov 6816 df-oprab 6817 df-mpt2 6818 df-om 7231 df-1st 7333 df-2nd 7334 df-wrecs 7576 df-recs 7637 df-rdg 7675 df-1o 7729 df-oadd 7733 df-er 7911 df-en 8122 df-dom 8123 df-sdom 8124 df-fin 8125 df-card 8955 df-cda 9182 df-pnf 10268 df-mnf 10269 df-xr 10270 df-ltxr 10271 df-le 10272 df-sub 10460 df-neg 10461 df-nn 11213 df-n0 11485 df-xnn0 11556 df-z 11570 df-uz 11880 df-fz 12520 df-hash 13312 |
This theorem is referenced by: opfi1ind 13476 |
Copyright terms: Public domain | W3C validator |