MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opeqex Structured version   Visualization version   GIF version

Theorem opeqex 4932
Description: Equivalence of existence implied by equality of ordered pairs. (Contributed by NM, 28-May-2008.)
Assertion
Ref Expression
opeqex (⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩ → ((𝐴 ∈ V ∧ 𝐵 ∈ V) ↔ (𝐶 ∈ V ∧ 𝐷 ∈ V)))

Proof of Theorem opeqex
StepHypRef Expression
1 neeq1 2852 . 2 (⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩ → (⟨𝐴, 𝐵⟩ ≠ ∅ ↔ ⟨𝐶, 𝐷⟩ ≠ ∅))
2 opnz 4912 . 2 (⟨𝐴, 𝐵⟩ ≠ ∅ ↔ (𝐴 ∈ V ∧ 𝐵 ∈ V))
3 opnz 4912 . 2 (⟨𝐶, 𝐷⟩ ≠ ∅ ↔ (𝐶 ∈ V ∧ 𝐷 ∈ V))
41, 2, 33bitr3g 302 1 (⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩ → ((𝐴 ∈ V ∧ 𝐵 ∈ V) ↔ (𝐶 ∈ V ∧ 𝐷 ∈ V)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1480  wcel 1987  wne 2790  Vcvv 3190  c0 3897  cop 4161
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4751  ax-nul 4759  ax-pr 4877
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-v 3192  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-nul 3898  df-if 4065  df-sn 4156  df-pr 4158  df-op 4162
This theorem is referenced by:  oteqex2  4933  oteqex  4934  epelg  4996
  Copyright terms: Public domain W3C validator