![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > opeq2i | Structured version Visualization version GIF version |
Description: Equality inference for ordered pairs. (Contributed by NM, 16-Dec-2006.) |
Ref | Expression |
---|---|
opeq1i.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
opeq2i | ⊢ 〈𝐶, 𝐴〉 = 〈𝐶, 𝐵〉 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opeq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | opeq2 4554 | . 2 ⊢ (𝐴 = 𝐵 → 〈𝐶, 𝐴〉 = 〈𝐶, 𝐵〉) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ 〈𝐶, 𝐴〉 = 〈𝐶, 𝐵〉 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1632 〈cop 4327 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-rab 3059 df-v 3342 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-sn 4322 df-pr 4324 df-op 4328 |
This theorem is referenced by: fnressn 6588 fressnfv 6590 wfrlem14 7597 seqomlem1 7714 recmulnq 9978 addresr 10151 seqval 13006 ids1 13567 wrdeqs1cat 13674 swrdccat3a 13694 ressinbas 16138 oduval 17331 mgmnsgrpex 17619 sgrpnmndex 17620 efgi0 18333 efgi1 18334 vrgpinv 18382 frgpnabllem1 18476 mat1dimid 20482 uspgr1v1eop 26340 clwlkclwwlkfo 27132 clwlksfoclwwlkOLD 27217 wlk2v2e 27309 avril1 27630 nvop 27840 phop 27982 signstfveq0 30963 bnj601 31297 tgrpset 36535 erngset 36590 erngset-rN 36598 pfx1 41921 pfxccatpfx2 41938 zlmodzxzadd 42646 lmod1 42791 lmod1zr 42792 zlmodzxzequa 42795 zlmodzxzequap 42798 |
Copyright terms: Public domain | W3C validator |